
The 30 Year Horizon

Manuel Bronstein William Burge T imothy Daly
James Davenport Michael Dewar Martin Dunstan
Albrecht Fortenbacher Patrizia Gianni Johannes Grabmeier
Jocelyn Guidry Richard Jenks Larry Lambe
Michael Monagan Scott Morrison William Sit
Jonathan Steinbach Robert Sutor Barry Trager
Stephen Watt Jim Wen Clifton Williamson

Volume 4: Axiom Developers Guide

July 4, 2018

654cda014164acd5f03fa6d197a17857c5565607

i

Portions Copyright (c) 2005 Timothy Daly

The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan

Portions Copyright (c) 2007 Alfredo Portes

Portions Copyright (c) 2007 Arthur Ralfs

Portions Copyright (c) 2005 Timothy Daly

Portions Copyright (c) 1991-2002,

The Numerical ALgorithms Group Ltd.

All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or

without modification, are permitted provided that the following

conditions are

met:

- Redistributions of source code must retain the above

copyright notice, this list of conditions and the

following disclaimer.

- Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other

materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd.

nor the names of its contributors may be used to endorse

or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

ii

Inclusion of names in the list of credits is based on historical information and is as accurate
as possible. Inclusion of names does not in any way imply an endorsement but represents
historical influence on Axiom development.

iii

Michael Albaugh Cyril Alberga Roy Adler
Christian Aistleitner Richard Anderson George Andrews
Jerry Archibald S.J. Atkins Jeremy Avigad
Henry Baker Martin Baker Stephen Balzac
Yurij Baransky David R. Barton Thomas Baruchel
Gerald Baumgartner Gilbert Baumslag Michael Becker
Nelson H. F. Beebe Jay Belanger David Bindel
Fred Blair Vladimir Bondarenko Mark Botch
Raoul Bourquin Alexandre Bouyer Karen Braman
Wolfgang Brehm Peter A. Broadbery Martin Brock
Manuel Bronstein Christopher Brown Stephen Buchwald
Florian Bundschuh Luanne Burns William Burge
Ralph Byers Quentin Carpent Pierre Casteran
Robert Cavines Pablo Cayuela Bruce Char
Ondrej Certik Tzu-Yi Chen Bobby Cheng
Cheekai Chin David V. Chudnovsky Gregory V. Chudnovsky
Mark Clements Roland Coeurjoly James Cloos
Jia Zhao Cong Josh Cohen Christophe Conil
Don Coppersmith George Corliss Robert Corless
Gary Cornell Meino Cramer Karl Crary
Jeremy Du Croz David Cyganski Nathaniel Daly
Timothy Daly Sr. Timothy Daly Jr. James H. Davenport
David Day James Demmel Didier Deshommes
Michael Dewar Inderjit Dhillon Jack Dongarra
Jean Della Dora Gabriel Dos Reis Claire DiCrescendo
Sam Dooley Nicolas James Doye Zlatko Drmac
Lionel Ducos Iain Duff Lee Duhem
Martin Dunstan Brian Dupee Dominique Duval
Robert Edwards Hans-Dieter Ehrich Heow Eide-Goodman
Lars Erickson Mark Fahey Richard Fateman
Bertfried Fauser Stuart Feldman John Fletcher
Brian Ford Albrecht Fortenbacher George Frances
Constantine Frangos Timothy Freeman Korrinn Fu
Marc Gaetano Rudiger Gebauer Van de Geijn
Kathy Gerber Patricia Gianni Gustavo Goertkin
Samantha Goldrich Holger Gollan Teresa Gomez-Diaz
Laureano Gonzalez-Vega Stephen Gortler Johannes Grabmeier
Matt Grayson Klaus Ebbe Grue James Griesmer
Vladimir Grinberg Oswald Gschnitzer Ming Gu
Jocelyn Guidry Gaetan Hache Steve Hague
Satoshi Hamaguchi Sven Hammarling Mike Hansen
Richard Hanson Richard Harke Bill Hart
Vilya Harvey Martin Hassner Arthur S. Hathaway
Dan Hatton Waldek Hebisch Karl Hegbloom
Ralf Hemmecke Henderson Antoine Hersen
Nicholas J. Higham Hoon Hong Roger House
Gernot Hueber Pietro Iglio Alejandro Jakubi
Richard Jenks Bo Kagstrom William Kahan
Kyriakos Kalorkoti Kai Kaminski Grant Keady
Wilfrid Kendall Tony Kennedy David Kincaid
Keshav Kini Ted Kosan Paul Kosinski

iv

Igor Kozachenko Fred Krogh Klaus Kusche
Bernhard Kutzler Tim Lahey Larry Lambe
Kaj Laurson Charles Lawson George L. Legendre
Franz Lehner Frederic Lehobey Michel Levaud
Howard Levy J. Lewis Ren-Cang Li
Rudiger Loos Craig Lucas Michael Lucks
Richard Luczak Camm Maguire Francois Maltey
William Martin Osni Marques Alasdair McAndrew
Bob McElrath Michael McGettrick Edi Meier
Ian Meikle David Mentre Jonathan Millen
Victor S. Miller Gerard Milmeister Mohammed Mobarak
H. Michael Moeller Michael Monagan Marc Moreno-Maza
Scott Morrison Joel Moses Mark Murray
William Naylor Patrice Naudin C. Andrew Neff
John Nelder Godfrey Nolan Arthur Norman
Jinzhong Niu Michael O’Connor Summat Oemrawsingh
Kostas Oikonomou Humberto Ortiz-Zuazaga Julian A. Padget
Bill Page David Parnas Susan Pelzel
Michel Petitot Didier Pinchon Ayal Pinkus
Frederick H. Pitts Frank Pfenning Jose Alfredo Portes
E. Quintana-Orti Gregorio Quintana-Orti Beresford Parlett
A. Petitet Andre Platzer Peter Poromaas
Claude Quitte Arthur C. Ralfs Norman Ramsey
Anatoly Raportirenko Guilherme Reis Huan Ren
Albert D. Rich Michael Richardson Jason Riedy
Renaud Rioboo Jean Rivlin Nicolas Robidoux
Simon Robinson Raymond Rogers Michael Rothstein
Martin Rubey Jeff Rutter Philip Santas
David Saunders Alfred Scheerhorn William Schelter
Gerhard Schneider Martin Schoenert Marshall Schor
Frithjof Schulze Fritz Schwarz Steven Segletes
V. Sima Nick Simicich William Sit
Elena Smirnova Jacob Nyffeler Smith Matthieu Sozeau
Ken Stanley Jonathan Steinbach Fabio Stumbo
Christine Sundaresan Klaus Sutner Robert Sutor
Moss E. Sweedler Eugene Surowitz Yong Kiam Tan
Max Tegmark T. Doug Telford James Thatcher
Laurent Thery Balbir Thomas Mike Thomas
Dylan Thurston Francoise Tisseur Steve Toleque
Raymond Toy Barry Trager Themos T. Tsikas
Gregory Vanuxem Kresimir Veselic Christof Voemel
Bernhard Wall Stephen Watt Andreas Weber
Jaap Weel Juergen Weiss M. Weller
Mark Wegman James Wen Thorsten Werther
Michael Wester R. Clint Whaley James T. Wheeler
John M. Wiley Berhard Will Clifton J. Williamson
Stephen Wilson Shmuel Winograd Robert Wisbauer
Sandra Wityak Waldemar Wiwianka Knut Wolf
Yanyang Xiao Liu Xiaojun Clifford Yapp
David Yun Qian Yun Vadim Zhytnikov
Richard Zippel Evelyn Zoernack Bruno Zuercher
Dan Zwillinger

Contents

0.1 Tedious Maintainer Tasks . 1

0.1.1 Maintaining the credits list . 1

0.2 What is the purpose of the HACKPI domain? 1

0.3 How Axiom Builds . 1

0.3.1 The environment variables . 1

0.4 The runtime structure of Axiom . 3

0.4.1 The build step . 3

0.4.2 Where each output file is created . 7

0.5 How Axiom Works . 13

0.5.1 Input and Type Selection . 13

0.5.2 A simple integral . 18

0.5.3 A simple integral, expansion 1 interpreter 18

0.5.4 A simple integral, expansion 2 integrate 21

0.5.5 A simple integral, expansion 2 internalIntegrate 23

0.5.6 A simple integral, expansion 3 univariate 25

0.5.7 A simple integral, expansion 4 integrate 27

0.5.8 A simple integral, expansion 5 monomialIntegrate 28

0.5.9 A simple integral, expansion 6 HermiteIntegrate 31

0.6 Tools . 34

0.6.1 svn . 34

0.6.2 git . 34

0.6.3 cvs . 34

0.7 Common Lisps . 37

0.7.1 GCL . 37

0.7.2 CCL . 38

v

vi CONTENTS

0.7.3 CMU CL . 39

0.7.4 Franz Lisp . 39

0.7.5 Lucid Common Lisp . 39

0.7.6 Symbolics Common Lisp . 39

0.7.7 Golden Common Lisp . 39

0.7.8 VM/LISP 370 . 39

0.7.9 Maclisp . 39

0.8 Changing GCL versions . 39

0.9 Literate Programming . 42

0.9.1 Pamphlet files . 42

0.9.2 noweb . 42

0.10 Databases . 43

0.10.1 libcheck . 43

0.10.2 asq . 44

0.11 Axiom internal representations . 44

0.12 Spad to internal function calling . 46

0.12.1 getdatabse output . 46

0.13 axiom command . 55

0.14 help command documentation . 55

0.14.1 help documentation for algebra . 55

0.14.2 Adding help documentation in Makefile 55

0.14.3 Using help documentation for regression testing 56

0.14.4 help documentation as algebra test files 57

0.15 debugsys . 57

0.15.1 debugging hyperdoc . 57

0.16 Understanding a compiled function . 57

0.17 The axiom.input startup file . 65

0.18 Where are Axiom symbols stored? . 65

0.19 Translating individual boot files to common lisp 67

0.20 Directories . 68

0.20.1 The mnt/linux/bin directory . 69

0.20.2 The mnt/linux/doc directory . 70

0.20.3 The mnt/linux/algebra directory . 73

CONTENTS vii

0.20.4 The mnt/linux/etc directory . 73

0.20.5 The mnt/linux/lib directory . 75

0.21 The)set command . 75

0.22 Special Output Formats . 76

0.23 Hand creating the hyperdoc binary . 76

0.24 Low Level Debugging Techniques . 77

0.24.1 Finding Anonymous Function Signatures 77

0.24.2 The example bug . 81

0.24.3 Operating system level I/O trace (strace) 96

0.25 How to make graphs in algebra books . 97

0.26 Adding or Editing pages in Hyperdoc . 98

0.27 Graphviz file creation . 98

0.28 Adding Algebra . 100

0.28.1 Adding algebra to the books . 100

0.28.2 Creating a stand-alone pamphlet file 110

0.29 Makefile . 110

Bibliography 111

viii CONTENTS

New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))

0.1. TEDIOUS MAINTAINER TASKS 1

Confronting every new programmer learning a new language are

• The Cave of Artifacts

• The Forest of Tooling

• The Mountain of Language

• The Cloud Castle of Mindset

– Daniel Higginbotham in Clojure for the Brave and True

0.1 Tedious Maintainer Tasks

0.1.1 Maintaining the credits list

Asiom tried hard to maintain a list of credits for people who contribute to the effort. The
contributions range from people who developed the original code to the administrative assis-
tant who maintained the newsletter to people who set up a vising scholar position to people
who wrote algebra code. In short, the list of people who contributed is varied. Credit should
be wildely shared.

The credits list is maintained in several places for several reasons.

1) books/bookheader.tex is the prefix to every book. Every book has the credits list.

2) books/bookvol5 (interpreter) has the credits list embedding in the source code.

3) bookvol10.4 has the credits list as a unit test

4) src/input/unittest1.input tests the)credits command

0.2 What is the purpose of the HACKPI domain?

HACKPI is a hack provided for the benefit of the axiom interpreter. As a mathematical
type, it is the simple transcendental extension Q(\pi) of the rational numbers. This type
allows interactive users to use the name ’%pi’ without a type both where a numerical value
is expected [as in draw(sin x,x=-%pi..%pi)] or when the exact symbolic value is meant.
The interpreter defaults a typeless %pi to HACKPI and then uses the various conversions to
cast it further as required by the context.

One could argue that it is unfair to single %pi out from other constants, but it occurs
frequently enough in school examples (specially for graphs) so it was worth a special hack.
In a non-interactive environment (library), HACKPI would not exist.

(Manuel Bronstein)

0.3 How Axiom Builds

0.3.1 The environment variables

Axiom uses a tree of Makefiles to build the system. Each Makefile is created from the literate
file (Makefile.pamphlet) and then executed.

2 CONTENTS

In order to have a complete set of variables we create an “environment” that contains all of
the shell variables (except the AXIOM variable).

These can be changed on the command line at the time of the top level “make” command.
One common usage pattern is to override the NOISE variable. This variable controls whether
we see the full output or just the echo of each individual step. Sometimes a build fails at a
step and we would like to know the details. By default they are written to $TMP/trace but
we can watch every detail with the command line:

make NOISE=

This overrides the output file and writes everything to the console.

Another common usage pattern is to override the tests that are run. By default, all tests are
run. This can be very time consuming. A particular subset can be run or, using the option
“notests”, none will be run:

make TESTSET=notests

AWK=gawk

BOOKS=/research/test/books

BYE=bye

CC=gcc

CCF=-O2 -fno-strength-reduce -Wall -D_GNU_SOURCE -DLINUXplatform

-I/usr/X11/include

COMMAND=/usr/local/axiom/mnt/ubuntu/bin/axiom

DAASE=/research/test/src/share

DESTDIR=/usr/local/axiom

DOCUMENT=/research/test/mnt/ubuntu/bin/document

GCLDIR=/research/test/lsp/gcl-2.6.8pre4

GCLOPTS=--enable-vssize=65536*2 --enable-locbfd --disable-dynsysbfd

--disable-statsysbfd --enable-maxpage=512*1024 --disable-xgcl

--disable-tkconfig

GCLVERSION=gcl-2.6.8pre4

INC=/research/test/src/include

INT=/research/test/int

LDF= -L/usr/X11R6/lib -L/usr/lib -lXpm

LISP=lsp

LSP=/research/test/lsp

MNT=/research/test/mnt

NOISE=-o /research/test/obj/tmp/trace

O=o

OBJ=/research/test/obj

PART=cprogs

PATCH=patch

PLF=LINUXplatform

RANLIB=ranlib

RUNTYPE=serial

SPAD=/research/test/mnt/

SPADBIN=/research/test/mnt/ubuntu/bin

SPD=/research/test

SRC=/research/test/src

SRCDIRS=interpdir sharedir algebradir etcdir clefdir docdir graphdir

smandir hyperdir browserdir inputdir

SUBPART=everything

SYS=ubuntu

TANGLE=/research/test/mnt/ubuntu/bin/lib/notangle

0.4. THE RUNTIME STRUCTURE OF AXIOM 3

TAR=tar

TESTSET=none

TMP=/research/test/obj/tmp

TOUCH=touch

UNCOMPRESS=gunzip

VERSION=Axiom (May 2010)

WEAVE=/research/test/mnt/ubuntu/bin/lib/noweave

XLIB=/usr/X11R6/lib

ZIPS=/research/test/zips

0.4 The runtime structure of Axiom

Runtime Structure [Bake14]

0.4.1 The build step

This shows the steps taken to build Axiom in the sequence they happen. Each level of
indentation is another level of Makefile being executed.

Makefile

1 noweb

2 copy SRC/scripts to AXIOM/bin

3 extract Makefile.SYS from Makefile.pamphlet

4 latex SRC/input/*.input.pamphlet

4 CONTENTS

5 extract SRC/algebra/Makefile.help from SRC/algebra/Makefile.pamphlet

5a make SRC/algebra/Makefile.help parallelhelp

5a1 extract syntax help from BOOKS/bookvol5

5a2 extract help files from BOOKS/bookvol10.*

6 extract BOOKS/Makefile from BOOKS/Makefile.pamphlet

6a make BOOKS/Makefile

6a1 copy SRC/scripts/tex/axiom.sty to AXIOM/doc

6a2 create AXIOM/doc/*.pdf

6a2a copy book*.pamphlet to AXIOM/doc

6a2b extract latex for each book

6a2c latex each book

6a2d dvipdfm each dvi file

6a3 make AXIOM/doc/toc.pdf

7 extract AXIOM/doc/hypertex/Makefile1 from BOOKS/bookvol11

7a make AXIOM/doc/hypertex/Makefile1

7a1 extract all xhtml pages to AXIOM/doc/hypertex

7a2 extract axiom1.bitmap from BOOK/bookvol11

7a3 extract rcm3720.input from BOOK/bookvol11

7a4 extract strang.input from BOOK/bookvol11

7a5 extract signatures.txt from BOOK/bookvol11

7a6 copy BOOKS/ps/doctitle.png to AXIOM/doc/hypertex

7a7 copy BOOKS/ps/lightbayou.png to AXIOM/doc/hypertex

8 make Makefile.SYS

8a create the root directories

8b create noweb if needed

8c extract SRC/Makefile from SRC/Makefile.pamphlet

8d make SRC/Makefile setup

8d1 extract SRC/scripts/Makefile from SRC/scripts/Makefile.pamphlet

8d2 make SRC/scripts/Makefile

8d1a copy all scripts to AXIOM/bin

8d3 extract SRC/lib/Makefile from SRC/lib/Makefile.pamphlet

8d4 make SRC/lib/Makefile

8d4a compile INT/lib/bsdsignal.c

8d4b compile INT/lib/cursor.c

8d4c compile INT/lib/edin.c

8d4d compile INT/lib/fnct-key.c

8d4e compile INT/lib/halloc.c

8d4f compile INT/lib/openpty.c

8d4g compile INT/lib/pixmap.c

8d4h compile INT/lib/prt.c

8d4i compile INT/lib/sockio-c.c

8d4j compile INT/lib/spadcolors.c

8d4k compile INT/lib/util.c

8d4l compile INT/lib/wct.c

8d4m compile INT/lib/xdither.c

8d4n compile INT/lib/xshade.c

8d4o compile INT/lib/xspadfill.c

8d4p create libspad.a

8d4q compile INT/lib/cfuns-c.c

8d4r compile INT/lib/hash.c

8d4s latex all files to INT/doc/src/lib

8e extract LSP/Makefile from LSP/Makefile.pamphlet

8f make LSP/Makefile gcldir

8f1 untar ZIPS/gcl

0.4. THE RUNTIME STRUCTURE OF AXIOM 5

8f2 apply Axiom patches to gcl

8f3 copy gcl_collectfn.lsp to OBJ/SYS/lsp

8f4 copy sys-proclaim.lisp to OBJ/SYS/lsp

8f5 make LSP/GCLVERSION/Makefile

8f6 add BOOKS/tangle.lsp to gcl to create INT/SYS/lisp

8g make SRC/Makefile

8g1 make stanzas from SRCDIRS

8g1a interpdir

8g1a1 copy bookvol5 to src/interp

8g1a2 copy bookvol9 to src/interp

8g1a3 copy bookvol10.5 to src/interp

8g1a4 extract util.ht from BOOKS/bookvol7.1 to AXIOM/doc

8g1a5 make SRC/interp/Makefile

8g1a5a build SAVESYS=OBJ/SYS/bin/interpsys

8g1a5a1 build DEPSYS=OBJ/SYS/bin/depsys

8g1a5a2 compile all interp files

8g1a5a3 call build-interpsys to make SAVESYS

8g1a5a4 build warm.data

8g1a5a5 build SAVESYS

8g1a5a6 copy SAVESYS to AXIOMSYS=AXIOM/bin/AXIOMsys

8g1b sharedir

8g1b1 make share/Makefile

8g1b1a copy SRC/share/algebra/command.list to AXIOM/lib

8g1c algebradir

8g1c1 extract algebra/Makefile from SRC/algebra/Makefile.pamphlet

8g1c2 copy bookvol10.2 to SRC/algebra

8g1c3 copy bookvol10.3 to SRC/algebra

8g1c4 copy bookvol10.4 to SRC/algebra

8g1c5 copy bookvol10.5 to SRC/algebra

8g1c6 extract ’findAlgebraFiles’

from SRC/algebra/Makefile.pamphlet

8g1c7 execute findAlgebraFiles and append output

to SRC/algebra/Makefile

8g1c8 make SRC/algebra/Makefile

8g1c8a build INT/algebra nrlibs

8g1c8b copy SRC/algebra/libdb.text to AXIOM/algebra

8g1c8c construct AXIOM/bin/index.html

8g1c8d copy SRC/share/algebra/gloss.text AXIOM/algebra

8g1c8e copy SRC/share/algebra/glossdef.text AXIOM/algebra

8g1c8f copy SRC/share/algebra/glosskey.text AXIOM/algebra

8g1d etcdir

8g1d1 extract SRC/etc/Makefile from SRC/etc/Makefile.pamphlet

8g1d2 make etc/Makefile

8g1d2a copy SRC/doc/gloss.text INT/algebra

8g1d2b copy SRC/doc/topics.data INT/algebra

8g1d2c call make-databases

8g1d2b copy INT/algebra/*.daase AXIOM/algebra

8g1d2e compile asq.c

8g1d2f copy OBJ/SYS/etc/asq AXIOM/bin

8g1d2g copy SRC/etc/summary AXIOM/lib

8g1d2h copy SRC/etc/copyright AXIOM/lib

8g1e clefdir

8g1e1 extract SRC/clef/Makefile from SRC/clef/Makefile.pamphlet

8g1e2 make clef/Makefile

6 CONTENTS

8g1e2a extract edible.c to OBJ/SYS/clef

8g1e2b compile OBJ/SYS/clef/edible.c

8g1e2c link edible, fnct-key, edin, bsdsignal, prt, wct,

openpty, cursor into AXIOM/bin/clef

8g1f docdir

8g1f1 extract SRC/doc/Makefile from SRC/doc/Makefile.pamphlet

8g1f2 make SRC/doc/Makefile

8g1f2a extract SRC/doc/axiom.bib to INT/doc

8g1f2b extract SRC/doc/axiom.sty to AXIOM/bin/tex

8g1f2c extract SRC/doc/refcard.dvi to AXIOM/doc

8g1f2d extract SRC/doc/endpaper.dvi to AXIOM/doc

8g1f2e copy SRC/doc/ps/* to AXIOM/doc/ps

8g1f2f extract SRC/doc/rosetta.dvi to AXIOM/doc

8g1f2g extract SRC/doc/booklet.c to INT

8g1f2h compile booklet.c

8g1f2i copy booklet to AXIOM/bin

8g1g graphdir

8g1g1 extract SRC/graph/Makefile from BOOKS/bookvol8.pamphlet

8g1g2 make graph/Makefile

8g1g2a compile and link AXIOM/lib/viewman

8g1g2b compile and link AXIOM/lib/view2d

8g1g2c compile and link AXIOM/lib/view3d

8g1g2d compile and link AXIOM/lib/viewalone

8g1g2e extract AXIOM/graph/parabola.view from bookvol8

8g1g2f extract psfiles from bookvol8 to AXIOM/lib/graph

8g1h smandir

8g1h1 extract SRC/sman/Makefile from BOOKS/bookvol6.pamphlet

8g1h2 make sman/Makefile

8g1h2a extract INT/sman/session.c from bookvol6

8g1h2b compile INT/sman/session.c to OBJ/SYS/sman/session.o

8g1h2c link OBJ/SYS/sman/session.o to AXIOM/lib/session

8g1h2d extract INT/sman/spadclient.c from bookvol6

8g1h2e compile INT/sman/spadclient.c

to OBJ/SYS/sman/spadclient.o

8g1h2f link OBJ/SYS/sman/spadclient.o to AXIOM/lib/spadclient

8g1h2g extract INT/sman/sman.c from bookvol6

8g1h2h compile INT/sman/sman.c to OBJ/SYS/sman/sman.o

8g1h2i link OBJ/SYS/sman/sman.o to AXIOM/lib/sman

8g1h2j extract axiom shell script from bookvol6 to AXIOM/bin

8g1h2k chmod axiom shell script to be executable

8g1h2l create AXIOM/doc/bookvol6.dvi

8g1i hyperdir

8g1i1 extract INT/hyper/Makefile from BOOKS/bookvol7.pamphlet

8gli2 make INT/hyper/Makefile (to make hyperdoc)

8g1i2a extract and compile AXIOM/lib/spadbuf

8g1i2b extract and compile AXIOM/lib/ex2ht

8g1i2c extract and compile AXIOM/bin/htadd

8g1i2d extract and compile AXIOM/lib/hthits

8g1i2e extract and compile AXIOM/bin/htsearch

8g1i2f extract and compile AXIOM/lib/presea

8g1i2g extract and compile AXIOM/bin/hypertex

8g1i2h untar SPD/books/axbook.tgz to AXIOM/doc

8g1i2j copy SPD/books/bigbayou.png to AXIOM/doc

8g1i2k copy SPD/books/doctitle.png to AXIOM/doc

0.4. THE RUNTIME STRUCTURE OF AXIOM 7

8g1i3 extract INT/hyper/Makefile from BOOKS/bookvol7.1.pamphlet

8g1i4 make INT/hyper/Makefile (to make hyperdoc pages)

8g1i4a copy SPD/books/bookvol7.1 to AXIOM/doc

8g1i4b htadd pages from AXIOM/doc/bookvol7.1

8g1i4c copy SPD/books/bitmaps AXIOM/doc/bitmaps

8g1i4d copy SPD/books/viewports AXIOM/doc/viewports

8g1i4e untar AXIOM/doc/viewports .Z files

8g1j browserdir

8g1j1 build of hyperdoc browser commented out

8g1k inputdir

8g1k1 extract SRC/input/Makefile from SRC/input/Makefile.pamphlet

8g1k2 make SRC/input/Makefile

8g1k2a copy SRC/input/*.input INT/input

8g1k2b lisp tangle input files from SRC/input/*.input.pamphlet

8g1k2c extract INT/input/Makefile

from SRC/input/Makefile.pamphlet

8g1k2d make INT/input/Makefile TESTSET

8g1k2d1 run regresstests

8g1k2d2 run catstests

8g1k2d3 run richtests

8g1k2d4 run regression tests

8g1k2d5 extract INT/input/Makefile.algebra

from SRC/algebra/Makefile.pamphlet

8g1k2d6 make INT/input/Makefile.algebra

0.4.2 Where each output file is created

Here we show which step in the above set of actions creates the file that ends up in the final
ship directory. We break it down by subdirectory in the final image.

AXIOM/algebra

in AXIOM/algebra:

*.o

browse.daase

category.daase

compress.daase

dependents.daase

interp.daase

operation.daase

users.daase

AXIOM/autoload

in AXIOM/autoload:

ax.o

bc-matrix.o

br-con.o

ht-util.o

mark.fn

8 CONTENTS

mark.o

nag-c02.o

nag-c05.o

nag-c06.o

nag-d01.o

nag-d02.o

nag-d03.o

nag-e01.o

nag-e02.o

nag-e04.o

nag-f01.o

nag-f02.o

nag-f04.o

nag-f07.o

nag-s.o

nspadaux.o

pspad1.fn

pspad1.o

pspad2.fn

pspad2.o

topics.o

wi1.fn

wi1.o

wi2.fn

wi2.o

AXIOM/bin

in AXIOM/bin:

asq 8g1d2f copy OBJ/SYS/etc/asq AXIOM/bin

axiom 8g1h2k chmod axiom shell script to be executable

axiom.sty 6a1 copy SRC/scripts/tex/axiom.sty to AXIOM/doc

AXIOMsys 8g1a5a6 copy SAVESYS to AXIOMSYS=AXIOM/bin/AXIOMsys

booklet 8g1f2i copy booklet to AXIOM/bin

boxhead 2 copy SRC/scripts to AXIOM/bin

boxtail 2 copy SRC/scripts to AXIOM/bin

boxup 2 copy SRC/scripts to AXIOM/bin

clef 8g1e2c link edible, fnct-key, edin, bsdsignal, prt, wct,

openpty, cursor into AXIOM/bin/clef

document 2 copy SRC/scripts to AXIOM/bin

htadd 8g1i2c extract and compile AXIOM/bin/htadd

htsearch 8g1i2e extract and compile AXIOM/bin/htsearch

hypertex 8g1i2g extract and compile AXIOM/bin/hypertex

index.html 8g1c8c construct AXIOM/bin/index.html

lib 1 noweb

btdefn

cpif

emptydefn

finduses

h2a

htmldoc

markup

0.4. THE RUNTIME STRUCTURE OF AXIOM 9

mnt

nodefs

noidx

noindex

noroff

noroots

notangle

nountangle

noweave

noweb

nt

nuweb2noweb

numtime

pipedocs

tmac.w

toascii

tohtml

toroff

totex

unmarkup

Makefile.pamphlet

man

man1

cpif.1

htmltoc.1

nodefs.1

noindex.1

noroff.1

noroots.1

notangle.1

nountangle.1

noweave.1

noweb.1

nuweb2noweb.1

sl2h.1

man7

nowebfilters.7

nowebstyle.7

showdvi 2 copy SRC/scripts to AXIOM/bin

? sman 8g1h2i link OBJ/SYS/sman/sman.o to AXIOM/lib/sman

SPADEDIT 2 copy SRC/scripts to AXIOM/bin

tex 2 copy SRC/scripts to AXIOM/bin

axiom.sty 8g1f2b extract SRC/doc/axiom.sty to AXIOM/bin/tex

2 copy SRC/scripts to AXIOM/bin

noweb.sty 1 noweb

nwmac.tex 1 noweb

? viewalone 8g1g2d compile and link AXIOM/lib/viewalone

AXIOM/doc

AXIOM/doc:

axbook

10 CONTENTS

*.xhtml

axiom.sty

bigbayou.png

bitmaps

*.bitmap

bookvol0.out

bookvol0.pdf

bookvol0.toc

bookvol10.1.out

bookvol10.1.pdf

bookvol10.1.toc

bookvol10.2.out

bookvol10.2.pdf

bookvol10.2.toc

bookvol10.3.out

bookvol10.3.pdf

bookvol10.3.toc

bookvol10.4.out

bookvol10.4.pdf

bookvol10.4.toc

bookvol10.5.out

bookvol10.5.pdf

bookvol10.5.toc

bookvol10.out

bookvol10.pdf

bookvol10.toc

bookvol11.out

bookvol11.pdf

bookvol11.toc

bookvol12.out

bookvol12.pdf

bookvol12.toc

bookvol1.out

bookvol1.pdf

bookvol1.toc

bookvol2.out

bookvol2.pdf

bookvol2.toc

bookvol3.out

bookvol3.pdf

bookvol3.toc

bookvol4.out

bookvol4.pdf

bookvol4.toc

bookvol5.out

bookvol5.pdf

bookvol5.toc

bookvol6.out

bookvol6.pdf

bookvol6.toc

bookvol7.out

bookvol7.pdf

bookvol7.toc

bookvol7.1.out

0.4. THE RUNTIME STRUCTURE OF AXIOM 11

bookvol7.1.pamphlet

bookvol7.1.pdf

bookvol7.1.toc

bookvol8.out

bookvol8.pdf

bookvol8.toc

bookvol9.out

bookvol9.pdf

bookvol9.toc

bookvolbib.pdf

doctitle.png

endpaper.dvi

ht.db

hypertex

*.xhtml

msgs

s2-us.msgs

ps

*.ps

refcard.dvi

rosetta.dvi

spadhelp

*.help

src

? algebra

algebra.Makefile.dvi

books.Makefile.dvi

clef

axiom.sty

edible.c.dvi

clef.Makefile.dvi

doc.Makefile.dvi

etc.Makefile.dvi

? hyper

input

*.input.dvi

input.Makefile.dvi

? interp

interp.Makefile.dvi

lib

*.c.dvi

lib.Makefile.dvi

Makefile.dvi

root.Makefile.dvi

scripts.Makefile.dvi

share.Makefile.dvi

? sman

src.Makefile.dvi

toc.pdf

util.ht

viewports

*.view

data

graph0

12 CONTENTS

image.bm

image.xpm

AXIOM/graph

AXIOM/graph

parabola.view: 8g1g2e extract AXIOM/graph/parabola.view from bookvol8

data

graph0

AXIOM/input

AXIOM/input:

*.input files

AXIOM/lib

AXIOM/lib:

command.list 8g1b1a copy SRC/share/algebra/command.list to AXIOM/lib

copyright 8g1d2h copy SRC/etc/copyright AXIOM/lib

ex2ht 8g1i2b extract and compile AXIOM/lib/ex2ht

graph 8g1g2f extract psfiles from bookvol8 to AXIOM/lib/graph

colorpoly.ps

colorwol.ps

drawarc.ps

drawcolor.ps

drawIstr.ps

drawline.ps

drawlines.ps

drawpoint.ps

draw.ps

drawrect.ps

drawstr.ps

drwfilled.ps

end.ps

fillarc.ps

fillpoly.ps

fillwol.ps

header.ps

setup.ps

hthits 8g1i2d extract and compile AXIOM/lib/hthits

presea 8g1i2f extract and compile AXIOM/lib/presea

session 8g1h2c link OBJ/SYS/sman/session.o to AXIOM/lib/session

spadbuf 8g1i2a extract and compile AXIOM/lib/spadbuf

spadclient 8g1h2f link OBJ/SYS/sman/spadclient.o AXIOM/lib/spadclient

SPADEDIT

summary 8g1d2g copy SRC/etc/summary AXIOM/lib

view2d 8g1g2b compile and link AXIOM/lib/view2d

view3d 8g1g2c compile and link AXIOM/lib/view3d

0.5. HOW AXIOM WORKS 13

viewman 8g1g2a compile and link AXIOM/lib/viewman

AXIOM/src

AXIOM/src:

? algebra

AXIOM/timestamp

AXIOM/timestamp

0.5 How Axiom Works

0.5.1 Input and Type Selection

First we change the default setting for autoload messages to turn off the noise of file loading
from the library:

(1) ->)set mes auto off

Next we tell the interpreter to show us the modemaps used to classify input and select types.
This is known as “bottomup” messages. We can watch the interpreter ponder the input.

(1) ->)set mes bot on

Now we give it something nontrivial to ponder.

(1) -> f:=1/(a*x+b)

After parsing the input Axiom begins to figure out the type of the expression. In this case
it starts with the multiply operator in the denominator.

Axiom has determined that “a” is of type VARIABLE and “x” is of type VARIABLE. It is
looking for function of the form

VARIABLE * VARIABLE

so it looks in the domain of the left argument “a” which is VARIABLE and does not find
the required function. Similarly it looks in the domain of the right argument “x” which is
VARIABLE and, not surprisingly, does not find the required function.

It tried to promote each VARIABLE to SYMBOL and looks for a way to mulitply VARI-
ABLES and SYMBOLS or SYMBOLS and SYMBOLS. Neither succeeds.

Function Selection for *

Arguments: (VARIABLE a,VARIABLE x)

-> no appropriate * found in Variable a

-> no appropriate * found in Variable x

-> no appropriate * found in Symbol

-> no appropriate * found in Variable a

-> no appropriate * found in Variable x

-> no appropriate * found in Symbol

14 CONTENTS

Modemaps from Associated Packages

no modemaps

Since it cannot find a specific modemap that uses the exact types it now expands the search
to look for the general modemaps. It searches these modemaps in order to try to find one
that fits.

Remaining General Modemaps

[1] (D,D1) -> D from D

if D has XFALG(D2,D1) and D2 has ORDSET and D1 has RING

The first match will fail because Symbol does not have RING. We can determine this by
asking the interpreter:

SYMBOL has RING

(1) false

Type: Boolean

The following modemaps will fail for various similar reasons:

[2] (D1,D) -> D from D

if D has XFALG(D1,D2) and D1 has ORDSET and D2 has RING

[3] (Integer,D) -> D from D

if D has VECTCAT D2 and D2 has TYPE and D2 has ABELGRP

[4] (D1,D) -> D from D

if D has VECTCAT D1 and D1 has TYPE and D1 has MONOID

[5] (D,D1) -> D from D

if D has VECTCAT D1 and D1 has TYPE and D1 has MONOID

[6] (D,D1) -> D1 from D

if D has SMATCAT(D2,D3,D4,D1) and D3 has RING and D4 has

DIRPCAT(D2,D3) and D1 has DIRPCAT(D2,D3)

[7] (D1,D) -> D1 from D

if D has SMATCAT(D2,D3,D1,D4) and D3 has RING and D1 has

DIRPCAT(D2,D3) and D4 has DIRPCAT(D2,D3)

[8] (D,D) -> D from D if D has SGROUP

[9] (D,D1) -> D from D if D has RMODULE D1 and D1 has RNG

[10] (D,D) -> D from D if D has MONAD

[11] (D,D) -> D from D

if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG

D1 and D3 has FLAGG D1

[12] (D1,D) -> D from D

if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG

D1 and D3 has FLAGG D1

[13] (D,D1) -> D from D

if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG

D1 and D3 has FLAGG D1

[14] (Integer,D) -> D from D

if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG

D2 and D4 has FLAGG D2

[15] (D,D1) -> D1 from D

if D has MATCAT(D2,D3,D1) and D2 has RING and D3 has FLAGG

D2 and D1 has FLAGG D2

[16] (D1,D) -> D1 from D

if D has MATCAT(D2,D1,D3) and D2 has RING and D1 has FLAGG

D2 and D3 has FLAGG D2

0.5. HOW AXIOM WORKS 15

[17] ((D5 -> D6),(D4 -> D5)) -> (D4 -> D6) from MappingPackage3(D4,

D5,D6)

if D4 has SETCAT and D5 has SETCAT and D6 has SETCAT

[18] (D1,D) -> D from D if D has LMODULE D1 and D1 has RNG

[19] (PolynomialIdeals(D1,D2,D3,D4),PolynomialIdeals(D1,D2,D3,D4))

-> PolynomialIdeals(D1,D2,D3,D4)

from PolynomialIdeals(D1,D2,D3,D4)

if D1 has FIELD and D2 has OAMONS and D3 has ORDSET and D4

has POLYCAT(D1,D2,D3)

[20] (D1,D) -> D from D

if D has GRMOD(D1,D2) and D1 has COMRING and D2 has ABELMON

[21] (D,D1) -> D from D

if D has GRMOD(D1,D2) and D1 has COMRING and D2 has ABELMON

[22] (D1,D2) -> D from D

if D has FMCAT(D1,D2) and D1 has RING and D2 has SETCAT

[23] (D1,D2) -> D from D

if D has FAMONC(D2,D1) and D2 has SETCAT and D1 has CABMON

[24] (Equation D1,D1) -> Equation D1 from Equation D1

if D1 has SGROUP and D1 has TYPE

[25] (D1,Equation D1) -> Equation D1 from Equation D1

if D1 has SGROUP and D1 has TYPE

[26] (D,D1) -> D from D

if D has DIRPCAT(D2,D1) and D1 has TYPE and D1 has MONOID

[27] (D1,D) -> D from D

if D has DIRPCAT(D2,D1) and D1 has TYPE and D1 has MONOID

[28] (DenavitHartenbergMatrix D2,Point D2) -> Point D2

from DenavitHartenbergMatrix D2

if D2 has Join(Field,TranscendentalFunctionCategory)

[29] (PositiveInteger,Color) -> Color from Color

[30] (DoubleFloat,Color) -> Color from Color

[31] (CartesianTensor(D1,D2,D3),CartesianTensor(D1,D2,D3)) ->

CartesianTensor(D1,D2,D3)

from CartesianTensor(D1,D2,D3)

if D1: INT and D2: NNI and D3 has COMRING

[32] (PositiveInteger,D) -> D from D if D has ABELSG

[33] (NonNegativeInteger,D) -> D from D if D has ABELMON

[34] (Integer,D) -> D from D if D has ABELGRP

Eventually the interpreter decides that it can coerce Symbol to Polynomial(Integer). We
can do this in the interpreter also:

a::Symbol::POLY(INT)

(1) a

Type: Polynomial Integer

And the interpreter can find multiply in POLY(INT):

[1] signature: (POLY INT,POLY INT) -> POLY INT

16 CONTENTS

implemented: slot $$$ from POLY INT

[2] signature: (POLY INT,POLY INT) -> POLY INT

implemented: slot $$$ from POLY INT

We can see this signature exists by asking the interpreter to show us the domain POLY(INT)
(truncated here for brevity):

)show POLY(INT)

Polynomial Integer is a domain constructor.

Abbreviation for Polynomial is POLY

This constructor is exposed in this frame.

Issue)edit src/algebra/POLY.spad to see algebra source code for POLY

------------------------------- Operations --------------------------------

?*? : (Fraction Integer,%) -> % ?*? : (Integer,%) -> %

?*? : (PositiveInteger,%) -> % ?*? : (%,Fraction Integer) -> %

?*? : (%,Integer) -> % ?*? : (%,%) -> %

Having found multipy the interpreter now starts a search for the operation

(POLY(INT)) + (VARIABLE)

It cannot find this modemap

Function Selection for +

Arguments: (POLY INT,VARIABLE b)

-> no appropriate + found in Polynomial Integer

-> no appropriate + found in Variable b

-> no appropriate + found in Variable b

so it promotes VARIABLE to POLY(INT) and finds the operation:

(POLY(INT)) + (POLY(INT))

[1] signature: (POLY INT,POLY INT) -> POLY INT

implemented: slot $$$ from POLY INT

Next it tackles the division operation where the numerator is PI (PositiveInteger) and the
denominator is POLY(INT). It tries to find

(PI) / (POLY(INT))

in PositiveInteger, Polynomial Integer and Integer. All attempts fail.

Function Selection for /

Arguments: (PI,POLY INT)

-> no appropriate / found in PositiveInteger

-> no appropriate / found in Polynomial Integer

-> no appropriate / found in Integer

-> no appropriate / found in PositiveInteger

-> no appropriate / found in Polynomial Integer

-> no appropriate / found in Integer

Modemaps from Associated Packages

0.5. HOW AXIOM WORKS 17

no modemaps

So now it turns to the general modemaps:

Remaining General Modemaps

[1] (D,D1) -> D from D if D has VSPACE D1 and D1 has FIELD

[2] (D,D1) -> D from D

if D has RMATCAT(D2,D3,D1,D4,D5) and D1 has RING and D4 has

DIRPCAT(D3,D1) and D5 has DIRPCAT(D2,D1) and D1 has FIELD

[3] (D1,D1) -> D from D if D has QFCAT D1 and D1 has INTDOM

[4] (D,D1) -> D from D

if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG

D1 and D3 has FLAGG D1 and D1 has FIELD

[5] (D,D1) -> D from D

if D has LIECAT D1 and D1 has COMRING and D1 has FIELD

[6] (D,D) -> D from D if D has GROUP

[7] (SparseMultivariatePolynomial(D2,Kernel D),

SparseMultivariatePolynomial(D2,Kernel D)) -> D

from D if D2 has INTDOM and D2 has ORDSET and D has FS D2

[8] (Float,Integer) -> Float from Float

[9] (D,D) -> D from D if D has FIELD

[10] (D,D) -> D from D

if D = EQ D1 and D1 has FIELD and D1 has TYPE or D = EQ D1

and D1 has GROUP and D1 has TYPE

[11] (DoubleFloat,Integer) -> DoubleFloat from DoubleFloat

[12] (D,D1) -> D from D

if D has AMR(D1,D2) and D1 has RING and D2 has OAMON and D1

has FIELD

it eventually promotes PI to FRAC(POLY(INT)) and POLY(INT) to FRAC(POLY(INT))
and finds the match:

(FRAC(POLY(INT))) / (FRAC(POLY(INT)))

We can ask the intepreter to show us this operation (again, the output is truncated for
brevity):

)show FRAC(POLY(INT))

Fraction Polynomial Integer is a domain constructor.

Abbreviation for Fraction is FRAC

This constructor is exposed in this frame.

Issue)edit src/algebra/FRAC.spad to see algebra source code for FRAC

------------------------------- Operations --------------------------------

?*? : (Fraction Integer,%) -> % ?*? : (Integer,%) -> %

?*? : (PositiveInteger,%) -> % ?*? : (%,Fraction Integer) -> %

?*? : (%,%) -> % ?**? : (%,Integer) -> %

?**? : (%,PositiveInteger) -> % ?+? : (%,%) -> %

?-? : (%,%) -> % -? : % -> %

?/? : (%,%) -> % ?<? : (%,%) -> Boolean

[1] signature: (FRAC POLY INT,FRAC POLY INT) -> FRAC POLY INT

implemented: slot $$$ from FRAC POLY INT

18 CONTENTS

At this point the interpreter has succeeded in finding a type for the expression and eventually
returns the result badged with the appropriate type:

1

(1) -------

a x + b

Type: Fraction Polynomial Integer

0.5.2 A simple integral

Now we will show an integration with successive levels of expansion of explanation. We will
use the expression above:

(1) -> f:=1/(a*x+b)

1

(1) -------

a x + b

Type: Fraction Polynomial Integer

(2) -> integrate(f,x)

log(a x + b)

(2) ------------

a

Type: Union(Expression Integer,...)

0.5.3 A simple integral, expansion 1 interpreter

(2) -> integrate(f,x)

Here we assume the previous discussion of modemap handling for the expression f and we
only look at the modemap handling for the integrate function. We are looking for a modemap
of the form:

integrate(FRAC(POLY(INT)),VARIABLE x)

So first we look in the domains of the arguments, that is, in Fraction Polynomial Integer,
and Variable. Neither one succeeds:

Function Selection for integrate

Arguments: (FRAC POLY INT,VARIABLE x)

-> no appropriate integrate found in Fraction Polynomial Integer

-> no appropriate integrate found in Variable x

-> no appropriate integrate found in Fraction Polynomial Integer

-> no appropriate integrate found in Variable x

Modemaps from Associated Packages

no modemaps

0.5. HOW AXIOM WORKS 19

Next we look at the general modemaps to find one that might work:

Remaining General Modemaps

[1] (D,D1) -> D from D

if D1 = SYMBOL and D has UTSCAT D2 and D2 has RING and D2

has ACFS INT and D2 has PRIMCAT and D2 has TRANFUN and D2

has ALGEBRA FRAC INT or D1 = SYMBOL and D has UTSCAT D2 and

D2 has RING and D2 has variables: D2 -> List D1 and D2 has

integrate: (D2,D1) -> D2 and D2 has ALGEBRA FRAC INT

[2] (D,D1) -> D from D

if D1 = SYMBOL and D has UPXSCAT D2 and D2 has RING and D2

has ACFS INT and D2 has PRIMCAT and D2 has TRANFUN and D2

has ALGEBRA FRAC INT or D1 = SYMBOL and D has UPXSCAT D2

and D2 has RING and D2 has variables: D2 -> List D1 and D2

has integrate: (D2,D1) -> D2 and D2 has ALGEBRA FRAC INT

[3] (D,D1) -> D from D

if D1 = SYMBOL and D has ULSCAT D2 and D2 has RING and D2

has ACFS INT and D2 has PRIMCAT and D2 has TRANFUN and D2

has ALGEBRA FRAC INT or D1 = SYMBOL and D has ULSCAT D2 and

D2 has RING and D2 has variables: D2 -> List D1 and D2 has

integrate: (D2,D1) -> D2 and D2 has ALGEBRA FRAC INT

[4] (Polynomial D2,Symbol) -> Polynomial D2 from Polynomial D2

if D2 has ALGEBRA FRAC INT and D2 has RING

[5] (D,D1) -> D from D

if D has MTSCAT(D2,D1) and D2 has RING and D1 has ORDSET

and D2 has ALGEBRA FRAC INT

[6] (Fraction Polynomial D4,Symbol) -> Union(Expression D4,List

Expression D4)

from IntegrationResultRFToFunction D4

if D4 has CHARZ and D4 has Join(GcdDomain,RetractableTo

Integer,OrderedSet,LinearlyExplicitRingOver Integer)

[7] (Expression Float,List Segment OrderedCompletion Float) ->

Result

from AnnaNumericalIntegrationPackage

[8] (Expression Float,Segment OrderedCompletion Float) -> Result

from AnnaNumericalIntegrationPackage

[9] (GeneralUnivariatePowerSeries(D2,D3,D4),Variable D3) ->

GeneralUnivariatePowerSeries(D2,D3,D4)

from GeneralUnivariatePowerSeries(D2,D3,D4)

if D3: SYMBOL and D2 has ALGEBRA FRAC INT and D2 has RING

and D4: D2

[10] (D2,Symbol) -> Union(D2,List D2) from FunctionSpaceIntegration(

D4,D2)

if D4 has Join(EuclideanDomain,OrderedSet,

CharacteristicZero,RetractableTo Integer,

LinearlyExplicitRingOver Integer) and D2 has Join(

TranscendentalFunctionCategory,PrimitiveFunctionCategory,

AlgebraicallyClosedFunctionSpace D4)

[11] (Fraction Polynomial D4,SegmentBinding OrderedCompletion

Fraction Polynomial D4) -> Union(f1: OrderedCompletion Expression

D4,f2: List OrderedCompletion Expression D4,fail: failed,

pole: potentialPole)

from RationalFunctionDefiniteIntegration D4

if D4 has Join(EuclideanDomain,OrderedSet,

20 CONTENTS

CharacteristicZero,RetractableTo Integer,

LinearlyExplicitRingOver Integer)

[12] (Fraction Polynomial D4,SegmentBinding OrderedCompletion

Expression D4) -> Union(f1: OrderedCompletion Expression D4,f2:

List OrderedCompletion Expression D4,fail: failed,pole:

potentialPole)

from RationalFunctionDefiniteIntegration D4

if D4 has Join(EuclideanDomain,OrderedSet,

CharacteristicZero,RetractableTo Integer,

LinearlyExplicitRingOver Integer)

[13] (D2,SegmentBinding OrderedCompletion D2) -> Union(f1:

OrderedCompletion D2,f2: List OrderedCompletion D2,fail: failed,

pole: potentialPole)

from ElementaryFunctionDefiniteIntegration(D4,D2)

if D2 has Join(TranscendentalFunctionCategory,

PrimitiveFunctionCategory,AlgebraicallyClosedFunctionSpace

D4) and D4 has Join(EuclideanDomain,OrderedSet,

CharacteristicZero,RetractableTo Integer,

LinearlyExplicitRingOver Integer)

Modemap [6] wins because we can construct the first argument by matching

Fraction Polynomial Integer

to

Fraction Polynomial D4

so we can infer that D4 == Integer

[6] (Fraction Polynomial D4,Symbol) -> Union(Expression D4,List

Expression D4)

from IntegrationResultRFToFunction D4

if D4 has CHARZ and D4 has Join(GcdDomain,RetractableTo

Integer,OrderedSet,LinearlyExplicitRingOver Integer)

Given that match we have two requirements on Integer, both of which we can check with
the interpreter:

INT has CHARZ

(3) true

Type: Boolean

(4) -> INT has Join(GcdDomain,RetractableTo Integer,OrderedSet,_

LinearlyExplicitRingOver Integer)

(4) true

Type: Boolean

So we have a match

[1] signature: (FRAC POLY INT,SYMBOL) -> Union(EXPR INT,LIST EXPR INT)

implemented: slot (Union (Expression (Integer))

(List (Expression (Integer))))

(Fraction (Polynomial (Integer)))(Symbol)

0.5. HOW AXIOM WORKS 21

from IRRF2F INT

[2] signature: (EXPR INT,SYMBOL) -> Union(EXPR INT,LIST EXPR INT)

implemented: slot (Union (Expression (Integer))

(List (Expression (Integer))))

(Expression (Integer))(Symbol)

from FSINT(INT,EXPR INT)

Now we invoke

integrate(FRAC(POLY(INT)),SYMBOL) -> Union(EXPR INT,LIST EXPR INT)

from IRRF2F(INT)

integrate(1/(a*x+b),x)

can print the result:

log(a x + b)

(2) ------------

a

Type: Union(Expression Integer,...)

0.5.4 A simple integral, expansion 2 integrate

Now that we know how the interpreter has matched the input and called the function we
need to follow the first level call into the function.

Axiom provides a trace tool that will allow us to walk into the function invocation and
watch what happens. We will follow this same invocation path many times, each time we
will descend another layer, repeating the information as we do.

For now, we look at the domain IRRF2F from irexpand.spad. The categorical definition of
this domain reads (we remove parts of the definition for brevity):

IntegrationResultRFToFunction(R): Exports == Implementation where

R: Join(GcdDomain, RetractableTo Integer, OrderedSet,

LinearlyExplicitRingOver Integer)

RF ==> Fraction Polynomial R

F ==> Expression R

IR ==> IntegrationResult RF

OF ==> OutputForm

Exports ==> with

expand : IR -> List F

++ expand(i) returns the list of possible real functions

++ corresponding to i.

if R has CharacteristicZero then

integrate : (RF, Symbol) -> Union(F, List F)

++ integrate(f, x) returns the integral of \spad{f(x)dx}

++ where x is viewed as a real variable..

Implementation ==> add

import IntegrationTools(R, F)

22 CONTENTS

import TrigonometricManipulations(R, F)

import IntegrationResultToFunction(R, F)

toEF: IR -> IntegrationResult F

toEF i == map(#1::F, i)$IntegrationResultFunctions2(RF, F)

expand i == expand toEF i

complexExpand i == complexExpand toEF i

if R has CharacteristicZero then

import RationalFunctionIntegration(R)

if R has imaginary: () -> R then

integrate(f, x) == complexIntegrate(f, x)

else

integrate(f, x) ==

l := [mkPrim(real g, x) for g in expand internalIntegrate(f, x)]

empty? rest l => first l

l

@

We can see that this domain constructor takes one argument which, in this case, is Integer.
We’ve already determined that Integer has the required Joins:

(4) -> INT has Join(GcdDomain,RetractableTo Integer,OrderedSet,_

LinearlyExplicitRingOver Integer)

(4) true

Type: Boolean

and we can see that:

(5) -> INT has CharacteristicZero

(5) true

Type: Boolean

so we can match the signature of integrate:

integrate(Fraction Polynomial Integer, Symbol) ->

Union(Expression Integer, List Expression Integer)

We can trace this domain and ask to see the output in math form:

(6) ->)trace IRRF2F)math

Packages traced:

IntegrationResultRFToFunction Integer

Parameterized constructors traced:

IRRF2F

and now, when we do the integration, we see the output of the trace:

integrate(1/(a*x+b),x)

1<enter IntegrationResultRFToFunction.integrate,32 :

1

arg1= -------

a x + b

0.5. HOW AXIOM WORKS 23

arg2= x

1<enter IntegrationResultRFToFunction.expand,18 :

1 a x + b

arg1= - log(-------)

a a

1>exit IntegrationResultRFToFunction.expand,18 :

a x + b

log(-------)

a

[------------]

a

1>exit IntegrationResultRFToFunction.integrate,32 :

log(a x + b)

a

log(a x + b)

(6) ------------

a

Type: Union(Expression Integer,...)

From this we learn that the arguments to integrate are exactly the arguments we supplied
and we know the exact types of the arguments because they have to match the signature of
the function:

1<enter IntegrationResultRFToFunction.integrate,32 :

integrate(, Symbol) ->

1

arg1= ------- <== Fraction Polynomial Integer

a x + b

arg2= x <== Symbol

and returns the result

1>exit IntegrationResultRFToFunction.integrate,32 :

log(a x + b)

------------ <== Union(Expression Integer, List Expression Integer)

a

0.5.5 A simple integral, expansion 2 internalIntegrate

If we look at the function definition for integrate:

integrate(f, x) ==

l := [mkPrim(real g, x) for g in expand internalIntegrate(f, x)]

empty? rest l => first l

l

we can see that there is a call to the function

internalIntegrate(f, x)

and we can compute the types of the arguments since they are exactly the types of the
integrate function itself:

internalIntegrate(Fraction Polynomial Integer, Symbol)

24 CONTENTS

and since the return value will be fed to the expand function we can look at the signature
of expand:

expand: IntegrationResult Fraction Polynomial Integer ->

List Expression Integer

and we can get the full signature for internalIntegrate:

internalIntegrate(Fraction Polynomial Integer, Symbol) ->

IntegrationResult Fraction Polynomial Integer

This comes from the domain

RationalFunctionIntegration(F): Exports == Implementation where

F: Join(IntegralDomain, RetractableTo Integer, CharacteristicZero)

where F is Integer.

SE ==> Symbol

P ==> Polynomial F

Q ==> Fraction P

UP ==> SparseUnivariatePolynomial Q

QF ==> Fraction UP

LGQ ==> List Record(coeff:Q, logand:Q)

UQ ==> Union(Record(ratpart:Q, coeff:Q), "failed")

ULQ ==> Union(Record(mainpart:Q, limitedlogs:LGQ), "failed")

Exports ==> with

internalIntegrate: (Q, SE) -> IntegrationResult Q

++ internalIntegrate(f, x) returns g such that \spad{dg/dx = f}.

Implementation ==> add

import RationalIntegration(Q, UP)

import IntegrationResultFunctions2(QF, Q)

import PolynomialCategoryQuotientFunctions(IndexedExponents SE,

SE, F, P, Q)

internalIntegrate(f, x) ==

map(multivariate(#1, x), integrate univariate(f, x))

If we look the signature for internalIntegrate and expand it we see:

internalIntegrate: (Q, SE) -> IntegrationResult Q

internalIntegrate: (Fraction Polynomial Integer, Symbol) ->

IntegrationResult Fraction Polynomial Integer

which is exactly what we need. When we look at the function we see:

internalIntegrate(f, x) ==

map(multivariate(#1, x), integrate univariate(f, x))

We can watch the function call by tracing INTRF:

(7) ->)trace INTRF)math

Packages traced:

IntegrationResultRFToFunction Integer,

RationalFunctionIntegration Integer

Parameterized constructors traced:

IRRF2F, INTRF

0.5. HOW AXIOM WORKS 25

and we see:

(7) -> integrate(1/(a*x+b),x)

1<enter IntegrationResultRFToFunction.integrate,32 :

1

arg1= -------

a x + b

arg2= x

1<enter RationalFunctionIntegration.internalIntegrate,25 :

1

arg1= -------

a x + b

arg2= x

1>exit RationalFunctionIntegration.internalIntegrate,25 :

1 a x + b

- log(-------)

a a

1<enter IntegrationResultRFToFunction.expand,18 :

1 a x + b

arg1= - log(-------)

a a

1>exit IntegrationResultRFToFunction.expand,18 :

a x + b

log(-------)

a

[------------]

a

1>exit IntegrationResultRFToFunction.integrate,32 :

log(a x + b)

a

log(a x + b)

(7) ------------

a

Type: Union(Expression Integer,...)

Now we see that internalIntegrate was called with the arguments

1<enter RationalFunctionIntegration.internalIntegrate,25 :

1

arg1= ------- <== Fraction Polynomial Integer

a x + b

arg2= x <== Symbol

and returned the values:

1>exit RationalFunctionIntegration.internalIntegrate,25 :

1 a x + b

- log(-------) <== IntegrationResult Fraction Polynomial Integer

a a

0.5.6 A simple integral, expansion 3 univariate

But the internalIntegrate function does its work by calling yet other functions, the deepest
of which is univariate:

26 CONTENTS

internalIntegrate(f, x) ==

map(multivariate(#1, x), integrate univariate(f, x))

Since univariate uses the arguments to the internalIntegrate function which has the signature:

internalIntegrate: (Fraction Polynomial Integer, Symbol) ->

we can determine that we need a univariate function with the signature:

univariate: (Fraction Polynomial Integer, Symbol) ->

This function is found in PolynomialCategoryQuotientFunctions, POLYCATQ which has
the form:

PolynomialCategoryQuotientFunctions(E, V, R, P, F):

Exports == Implementation where

E: OrderedAbelianMonoidSup

V: OrderedSet

R: Ring

P: PolynomialCategory(R, E, V)

F: Field with

coerce: P -> %

numer : % -> P

denom : % -> P

UP ==> SparseUnivariatePolynomial F

RF ==> Fraction UP

Exports ==> with

variables : F -> List V

++ variables(f) returns the list of variables appearing

++ in the numerator or the denominator of f.

mainVariable: F -> Union(V, "failed")

++ mainVariable(f) returns the highest variable appearing

++ in the numerator or the denominator of f, "failed" if

++ f has no variables.

univariate : (F, V) -> RF

++ univariate(f, v) returns f viewed as a univariate

++ rational function in v.

Implementation ==> add

P2UP: (P, V) -> UP

univariate(f, x) == P2UP(numer f, x) / P2UP(denom f, x)

P2UP(p, x) ==

map(#1::F,

univariate(p, x))$SparseUnivariatePolynomialFunctions2(P, F)

So we are calling the function:

univariate: (Fraction Polynomial Integer, Symbol) ->

Fraction SparseUnivariatePolynomial Field with

coerce: PolynomialCategory(Ring, OrderedAbelianMonoidSup, OrderedSet) -> %

numer: % -> PolynomialCategory(Ring, OrderedAbelianMonoidSup, OrderedSet)

denom: % -> PolynomialCategory(Ring, OrderedAbelianMonoidSup, OrderedSet)

which we can see by tracing that domain:

(8) ->)trace POLYCATQ)math

0.5. HOW AXIOM WORKS 27

Packages traced:

IntegrationResultRFToFunction Integer,

RationalFunctionIntegration Integer,

PolynomialCategoryQuotientFunctions(IndexedExponents

Kernel Expression Integer,Kernel Expression Integer,

Integer,SparseMultivariatePolynomial(Integer,Kernel

Expression Integer),Expression Integer),

PolynomialCategoryQuotientFunctions(IndexedExponents

Symbol,Symbol,Integer,Polynomial Integer,Fraction

Polynomial Integer)

Parameterized constructors traced:

IRRF2F, INTRF, POLYCATQ

which gives the input:

1<enter PolynomialCategoryQuotientFunctions.univariate,16 :

1

arg1= ------- <== Fraction Polynomial Integer

a x + b

arg2= x <== Symbol

and the output

1>exit PolynomialCategoryQuotientFunctions.univariate,16 :

1

-

a

----- <== Fraction SparseUnivariatePolynomial Field with

b coerce: P -> %

? + - numer: % -> P

a denom: % -> P

It should be clear that univariate divided the numerator and denominator by the leading
coefficient of the polynomial in the denominator. It also replaced “x” with the variable “?”.

0.5.7 A simple integral, expansion 4 integrate

When univariate returns, the results are fed to another integrate, this time from Rational-
Integration (INTRAT). This domain looks like:

RationalIntegration(F, UP): Exports == Implementation where

F : Join(Field, CharacteristicZero, RetractableTo Integer)

UP: UnivariatePolynomialCategory F

RF ==> Fraction UP

IR ==> IntegrationResult RF

LLG ==> List Record(coeff:RF, logand:RF)

URF ==> Union(Record(ratpart:RF, coeff:RF), "failed")

U ==> Union(Record(mainpart:RF, limitedlogs:LLG), "failed")

OF ==> OutputForm

Exports ==> with

integrate : RF -> IR

++ integrate(f) returns g such that \spad{g’ = f}.

28 CONTENTS

Implementation ==> add

import TranscendentalIntegration(F, UP)

integrate f ==

rec := monomialIntegrate(f, differentiate)

integrate(rec.polypart)::RF::IR + rec.ir

This domain was constructed and “brought into scope” in RationalFunctionIntegration(F)
with the statement

import RationalIntegration(Fraction Polynomial Integer,

SparseUnivariatePolynomial Fraction Polynomial Integer)

and the function has the signature

integrate:

Fraction SparseUnivariatePolynomial Fraction Polynomial Integer ->

IntegrationResult Fraction

Fraction Polynomial Integer

1<enter RationalIntegration.integrate,32 :

1

-

a

arg1= ----- <== Fraction SparseUnivariatePolynomial

b Fraction Polynomial Integer

? + -

a

1>exit RationalIntegration.integrate,32 :

1 b

- log(? + -) <== IntegrationResult Fraction SparseUnivariatePolynomial

a a Fraction Polynomial Integer

0.5.8 A simple integral, expansion 5 monomialIntegrate

The integrate function is defined as:

integrate f ==

print(outputForm("tpdhere INTRAT 1")@OF)$OF

rec := monomialIntegrate(f, differentiate)

integrate(rec.polypart)::RF::IR + rec.ir

Notice that while “f” is an argument to integrate, the “differentiate” function is a free
variable. The Axiom compiler will look at all of the symbols “in scope” to find its meaning.
This code does an import:

import TranscendentalIntegration(Fraction Polynomial Integer,

SparseUnivariatePolynomial Fraction Polynomial Integer)

which exports monomialIntegrate

TranscendentalIntegration(F, UP): Exports == Implementation where

F : Field

UP : UnivariatePolynomialCategory F

RF ==> Fraction UP

FF ==> Record(ratpart:F, coeff:F)

0.5. HOW AXIOM WORKS 29

UF ==> Union(FF, "failed")

IR ==> IntegrationResult RF

REC ==> Record(ir:IR, specpart:RF, polypart:UP)

Exports ==> with

monomialIntegrate : (RF, UP -> UP) -> REC

++ monomialIntegrate(f, ’) returns \spad{[ir, s, p]} such that

++ \spad{f = ir’ + s + p} and all the squarefree factors of the

++ denominator of s are special w.r.t the derivation ’.

Implementation ==> add

import SubResultantPackage(UP, UP2)

import MonomialExtensionTools(F, UP)

import TranscendentalHermiteIntegration(F, UP)

import CommuteUnivariatePolynomialCategory(F, UP, UP2)

monomialIntegrate(f, derivation) ==

zero? f => [0, 0, 0]

r := HermiteIntegrate(f, derivation)

zero?(inum := numer(r.logpart)) =>

[r.answer::IR, r.specpart, r.polypart]

iden := denom(r.logpart)

x := monomial(1, 1)$UP

resultvec := subresultantVector(UP2UP2 inum -

(x::UP2) * UP2UP2 derivation iden, UP2UP2 iden)

respoly := primitivePart leadingCoefficient resultvec 0

rec := splitSquarefree(respoly, kappa(#1, derivation))

logs:List(LOG) := [

[1, UP2UPR(term.factor),

UP22UPR swap primitivePart(resultvec(term.exponent),term.factor)]

for term in factors(rec.special)]

dlog :=

((derivation x) = 1) => r.logpart

differentiate(mkAnswer(0, logs, empty()),

differentiate(#1, derivation))

(u := retractIfCan(p := r.logpart - dlog)@Union(UP, "failed")) case UP =>

[mkAnswer(r.answer, logs, empty), r.specpart, r.polypart + u::UP]

[mkAnswer(r.answer, logs, [[p, dummy]]), r.specpart, r.polypart]

which expands into the type signature:

monomialIntegrate:

(Fraction SparseUnivariatePolynomial Fraction Polynomial Integer,

SparseUnivariatePolynomial Fraction Polynomial Integer ->

SparseUnivariatePolynomial Fraction Polynomial Integer) ->

Record(ir: IntegrationResult Fraction

SparseUnivariatePolynomial Fraction Polynomial Integer,

specpart: Fraction

SparseUnivariatePolynomial Fraction Polynomial Integer,

polypart: SparseUnivariatePolynomial Fraction Polynomial Integer)

++ monomialIntegrate(f, ’) returns \spad{[ir, s, p]} such that

++ \spad{f = ir’ + s + p} and all the squarefree factors of the

++ denominator of s are special w.r.t the derivation ’.

30 CONTENTS

we can watch this happen:

)trace INTTR)math

Function traced: UnivariatePolynomialCategory

Packages traced:

IntegrationResultRFToFunction Integer,

RationalFunctionIntegration Integer,

RationalIntegration(Fraction Polynomial Integer,

SparseUnivariatePolynomial Fraction Polynomial

Integer), PolynomialCategoryQuotientFunctions(

IndexedExponents Kernel Expression Integer,Kernel

Expression Integer,Integer,

SparseMultivariatePolynomial(Integer,Kernel

Expression Integer),Expression Integer),

PolynomialCategoryQuotientFunctions(IndexedExponents

Symbol,Symbol,Integer,Polynomial Integer,Fraction

Polynomial Integer), TranscendentalIntegration(

Fraction Polynomial Integer,

SparseUnivariatePolynomial Fraction Polynomial

Integer)

Parameterized constructors traced:

IRRF2F, INTRF, INTRAT, POLYCATQ, INTTR

and we can watch the monomialIntegrate function call

(34) -> integrate(1/(a*x+b),x)

1<enter IntegrationResultRFToFunction.integrate,32 :

1

arg1= -------

a x + b

arg2= x

"tpdhere IRRF2F 1"

1<enter RationalFunctionIntegration.internalIntegrate,25 :

1

arg1= -------

a x + b

arg2= x

1<enter PolynomialCategoryQuotientFunctions.univariate,16 :

1

arg1= -------

a x + b

arg2= x

1>exit PolynomialCategoryQuotientFunctions.univariate,16 :

1

-

a

b

? + -

a

1<enter RationalIntegration.integrate,32 :

1

-

a

arg1= ----- <== Fraction SparseUnivariatePolynomial

0.5. HOW AXIOM WORKS 31

b Fraction Polynomial Integer

? + -

a

1<enter TranscendentalIntegration.monomialIntegrate,81 :

1

-

a

arg1= ----- <== Fraction SparseUnivariatePolynomial

b Fraction Polynomial Integer

? + -

a

arg2= theMap(UPOLYC-;differentiate;2S;37,873)

1>exit TranscendentalIntegration.monomialIntegrate,81 :

1 b

[ir= - log(? + -),specpart= 0,polypart= 0]

a a

1>exit RationalIntegration.integrate,32 :

1 b

- log(? + -)

a a

1>exit RationalFunctionIntegration.internalIntegrate,25 :

1 a x + b

- log(-------)

a a

1>exit IntegrationResultRFToFunction.integrate,32 :

log(a x + b)

a

log(a x + b)

(34) ------------

a

Type: Union(Expression Integer,...)

(35) ->

0.5.9 A simple integral, expansion 6 HermiteIntegrate

Since “f” is not zero we invoke HermiteIntegrate from the domain TranscendentalHermiteIn-
tegration which looks like:

TranscendentalHermiteIntegration(F, UP): Exports == Implementation where

F : Field

UP : UnivariatePolynomialCategory F

N ==> NonNegativeInteger

RF ==> Fraction UP

REC ==> Record(answer:RF, lognum:UP, logden:UP)

HER ==> Record(answer:RF, logpart:RF, specpart:RF, polypart:UP)

Exports ==> with

HermiteIntegrate: (RF, UP -> UP) -> HER

++ HermiteIntegrate(f, D) returns \spad{[g, h, s, p]}

++ such that \spad{f = Dg + h + s + p},

++ h has a squarefree denominator normal w.r.t. D,

32 CONTENTS

++ and all the squarefree factors of the denominator of s are

++ special w.r.t. D. Furthermore, h and s have no polynomial parts.

++ D is the derivation to use on \spadtype{UP}.

Implementation ==> add

import MonomialExtensionTools(F, UP)

HermiteIntegrate(f, derivation) ==

rec := decompose(f, derivation)

hi := normalHermiteIntegrate(rec.normal, derivation)

qr := divide(hi.lognum, hi.logden)

[hi.answer, qr.remainder / hi.logden, rec.special, qr.quotient + rec.poly]

The function has the same input signature as monomialIntegrate but a different return
signature.

HermiteIntegrate:

(Fraction SparseUnivariatePolynomial Fraction Polynomial Integer,

SparseUnivariatePolynomial Fraction Polynomial Integer ->

SparseUnivariatePolynomial Fraction Polynomial Integer) ->

Record(answer:Fraction SparseUnivariatePolynomial

Fraction Polynomial Integer,

logpart:Fraction SparseUnivariatePolynomial

Fraction Polynomial Integer,

specpart:Fraction SparseUnivariatePolynomial

Fraction Polynomial Integer,

polypart:SparseUnivariatePolynomial Fraction Polynomial Integer)

so we trace this domain

(37) ->)trace INTHERTR)math

Function traced: UnivariatePolynomialCategory

Packages traced:

IntegrationResultRFToFunction Integer,

RationalFunctionIntegration Integer,

RationalIntegration(Fraction Polynomial Integer,

SparseUnivariatePolynomial Fraction Polynomial

Integer), PolynomialCategoryQuotientFunctions(

IndexedExponents Kernel Expression Integer,Kernel

Expression Integer,Integer,

SparseMultivariatePolynomial(Integer,Kernel

Expression Integer),Expression Integer),

PolynomialCategoryQuotientFunctions(IndexedExponents

Symbol,Symbol,Integer,Polynomial Integer,Fraction

Polynomial Integer), TranscendentalIntegration(

Fraction Polynomial Integer,

SparseUnivariatePolynomial Fraction Polynomial

Integer), TranscendentalHermiteIntegration(Fraction

Polynomial Integer,SparseUnivariatePolynomial

Fraction Polynomial Integer)

Parameterized constructors traced:

IRRF2F, INTRF, INTRAT, POLYCATQ, INTTR, INTHERTR

and now we see

(38) -> integrate(1/(a*x+b),x)

0.5. HOW AXIOM WORKS 33

1<enter IntegrationResultRFToFunction.integrate,32 :

1

arg1= -------

a x + b

arg2= x

"tpdhere IRRF2F 1"

1<enter RationalFunctionIntegration.internalIntegrate,25 :

1

arg1= -------

a x + b

arg2= x

1<enter RationalIntegration.integrate,32 :

1

-

a

arg1= -----

b

? + -

a

"tpdhere INTRAT 1"

1<enter TranscendentalIntegration.monomialIntegrate,81 :

1

-

a

arg1= -----

b

? + -

a

arg2= theMap(UPOLYC-;differentiate;2S;37,873)

1<enter TranscendentalHermiteIntegration.HermiteIntegrate,18 :

1

-

a

arg1= -----

b

? + -

a

arg2= theMap(UPOLYC-;differentiate;2S;37,873)

1>exit TranscendentalHermiteIntegration.HermiteIntegrate,18 :

1

-

a

[answer= 0,logpart= -----,specpart= 0,polypart= 0]

b

? + -

a

1>exit TranscendentalIntegration.monomialIntegrate,81 :

1 b

[ir= - log(? + -),specpart= 0,polypart= 0]

a a

"tpdhere UPOLYC 1"

1>exit RationalIntegration.integrate,32 :

1 b

- log(? + -)

34 CONTENTS

a a

1>exit RationalFunctionIntegration.internalIntegrate,25 :

1 a x + b

- log(-------)

a a

1<enter IntegrationResultRFToFunction.expand,18 :

1 a x + b

arg1= - log(-------)

a a

1>exit IntegrationResultRFToFunction.expand,18 :

a x + b

log(-------)

a

[------------]

a

1>exit IntegrationResultRFToFunction.integrate,32 :

log(a x + b)

a

log(a x + b)

(38) ------------

a

Type: Union(Expression Integer,...)

so HermiteIntegrate did nothing to the input. Next we call normalHermiteIntegrate which
is a local function

0.6 Tools

0.6.1 svn

SVN is a source control system on all platforms. Axiom ’silver’ is maintained in an SVN
archive on sourceforge. This can be pulled from:

svn co https://axiom.svn.sf.net/svnroot/axiom/trunk/axiom axiom

0.6.2 git

Git is a unix-based source code control system. Axiom ’silver’ is maintained in a git archive.
This can be pulled from:

git-clone ssh://git@axiom-developer.org/home/git/silver

the password for the userid git is linus.

0.6.3 cvs

This assumes that you have set up ssh on the Savannah site. CVS does not use a password.
You have to log onto the Savannah site and set up a public key. This requires you to:

• set up a local public key: ssh-keygen -b 1024 -t rsa1

0.6. TOOLS 35

• open a browser

• nagivate to the savannah page that has your personal keys

• open .ssh/identity.pub

• cut .ssh/identity.pub

• paste it into your personal key list on savannah

• go have a beer (the page takes an hour or two to update)

Once you have a working key you can do the cvs login. If it prompts you for a password
then the key is not working. If it prompts you to “Enter the passphrase for RSA key” then
cvs login will work.

I maintain a directory where I work (call this WORK)

/home/axiomgnu/new

and a directory for CVS (call this GOLD)

/axiom

When I want to export a set of changes I do the following steps:

0) MAKE SURE THE /.ssh/config FILE IS CORRECT:

(you should only need to do this once.

you need to change the User= field)

Host *.gnu.org

Protocol=1

Compression=yes

CompressionLevel=3

User=axiom

StrictHostKeyChecking=no

PreferredAuthentications=publickey,password

NumberOfPasswordPrompts=2

1) MAKE SURE THE SHELL VARIABLES ARE OK:

(normally set in .bashrc)

export CVS_RSH=ssh

export CVSROOT=:pserver:axiom@subversions.gnu.org:/cvsroot/axiom

^^^^^

change this to your id

2) MAKE SURE YOU’RE LOGGED IN:

(I keep a session open all the time but it doesn’t seem to care

if you login again. i’m not sure what login does, actually)

cvs login

3) GET A FRESH COPY FOR THE FIRST TIME OR AT ANY TIME:

(you only need to do this the first time but you can erase

your whole axiom subtree and refresh it again doing this.

note that i work as root so i can update /. Most rational

people are smarter than me and work as a regular user so

you have to change the instructions for cd. But you knew that)

36 CONTENTS

cd /

cvs co axiom

4) MAKE SURE THAT GOLD, MY LOCAL CVS COPY, IS UP TO DATE:

(I maintain an exact copy of the CVS repository and only make

changes to it when i want to export the changes. that way I

won’t export my working tree by accident. my working tree is

normally badly broken.

The update command makes sure that you have all of the changes

other people might have made and checked in. you have to merge

your changes so you don’t step on other people’s work.

So be sure to run update BEFORE you copy files to GOLD)

cd /axiom

cvs update

5) COPY CHANGED FILES FROM WORK TO THE GOLD TREE:

(This is an example for updating the *.daase files.

You basically are changing your GOLD tree to reflect the

way you want CVS to look once you check in all of the files.)

cd /home/axiomgnu/new

cp src/share/algebra/*.daase /axiom/src/share/algebra

6) IF A FILE IS NEW (e.g. src/interp/foo.lisp.pamphlet) THEN:

(If you create a file you need to "put it under CVS control"

CVS only cares about files you explicitly add or delete.

If you make a new file and copy it to GOLD you need to do this.

Don’t do the "cvs add" in your WORK directory. The cvs add

command updates the files in the CVS directory and you won’t

have them in your WORK directory.

Notice that you do the "cvs add" in the directory where the

file was added (hence, the cd commands).

cd /axiom/src/interp

cvs add -m"some pithy comment" foo.lisp.pamphlet

cd /axiom

7) IF A FILE IS DELETED (e.g. src/interp/foo.lisp.pamphlet) THEN:

(you have to delete the file from the GOLD directory BEFORE you

do a "cvs remove". The "cvs remove" will update the files in

the CVS directory

Notice that you do the "cvs remove" in the directory where the

file was deleted (hence, the cd commands).

cd /axiom/src/interp

rm foo.lisp.pamphlet

cvs remove foo.lisp.pamphlet

cd /axiom

0.7. COMMON LISPS 37

8) IF A DIRECTORY IS NEW (e.g. foodir) THEN:

(this will put "foodir" under CVS control. It will also create

foodir/CVS as a directory with a bunch of control files in the

foodir/CVS directory. Don’t mess with the control files.

(there are a bunch of special rules about directories.

empty directories are not downloaded by update.)

(NOTE: THERE IS NO WAY TO DELETE A DIRECTORY)

cd /axiom/src

mkdir foodir

cvs add -m "pithy comment" foodir

cd /axiom

9) EDIT CHANGELOG:

changelog is already under CVS control so it will get uploaded

when you do the checkin.)

cd /axiom

emacs -nw changelog

(add a date, initials, and pithy comment, save it, and exit)

10) CHECK IN THE CHANGES

(This will actually change the savannah CVS repository.

The "cvs ci" command will recurse thru all of the lower

subdirectories and look for changed files. It will change

the host versions of those files to agree with your copy.

If somebody else has changed a file while you were busy

developing code then the checkin MAY complain (if it can’t

merge the changes)

cd /axiom

cvs ci -m"pithy comment"

Congrats. You’ve now done your first change to the production image. Please be very careful
as this is a world readable copy. We don’t want to ship nonsense. Test everything. Even
trivial changes before you upload.

0.7 Common Lisps

0.7.1 GCL

Axiom was ported to run under AKCL which was a common lisp developed by Bill Schelter.
He started with KCL (Kyoto Common Lisp) and, since he lived and worked in Austin, Texas,
named his version AKCL (Austin-Kyoto Common Lisp). Bill worked under contract to the
Scratchpad group at IBM Research. I was the primary developer for system internals so Bill
and I worked closely together on a lot of issues. After Axiom was sold to NAG Bill continued
to develop AKCL and it eventually became GCL (Gnu Common Lisp).

In order to port Axiom to run on GCL we need to do several things. First, we need to apply

38 CONTENTS

a few patches. These patches enlarge the default stack size, remove the startup banner, link
with Axiom’s socket library, and rename collectfn.

The issue with the stack size is probably bogus. At one point the system was running out
of stack space but the problem was due to a recursive expansion of a macro and no amount
of stack space would be sufficient. This patch remains at the moment but should probably
be removed and tested.

The startup banner is an issue because we plan to run under various frontend programs like
Texmacs and the Magnus ZLC. We need to just output a single prompt.

Axiom has a socket library because at the time it was developed under AKCL there was no
socket code in Lisp. There is still not a standard common lisp socket library but I believe
all common lisps have a way to manipulate sockets. This code should be rewritten in lisp
and #+ for each common lisp.

The collectfn file is a major optimization under GCL. When collectfn is loaded and the lisp
compiler is run then collectfn will output a .fn file. The second time the compiler is invoked
the .fn file is consulted to determine the actual types of arguments used. Function calling
is highly optimized using this type information so that fast function calling occurs. Axiom
should be built one time to create the int/*/*.fn files. It should then be rebuilt using the
cached .fn files. I will automate this process into the Makefiles in the future.

GCL implementation will have a major porting problem to brand new platforms. The
compiler strategy is to output C code, compile it using GCC, and dynamically link the
machine code to the running image. This requires deep knowledge of the symbol tables used
by the native linker for each system. In general this is a hard problem that requires a lot of
expertise. Bill Schelter and I spent a lot of time and effort making this work for each port.
The magic knowledge is not written down anywhere and I no longer remember the details.

0.7.2 CCL

When Axiom was sold to NAG it was ported to CCL (Codemist Common Lisp) which is
not, strictly speaking, a common lisp implementation. It contains just enough common lisp
to support Axiom and, as I’m a great believer in simple code, it only needed a small subset
of a full common lisp.

CCL can be considered the best way to get Axiom running on a new architecture as the
porting issues are minimal.

CCL is a byte-interpreter implementation and has both the positive and negative aspects of
that design choice. The positive aspect is that porting the code to run on new architectures
is very simple. Once the CCL byte-code interpreter is running then Axiom is running. The
saved-system image is pure byte-codes and is completely system independent.

The negative aspects are that it is slow and the garbage collector appears broken. Compiling
the Axiom library files on an file-by-file basis takes about 1 hour on GCL and about 12 hours
on CCL. Compiling all of the Axiom library files in the same image (as opposed to starting
a new image per file) still takes about 1 hour on GCL. It never finishes in CCL. Indeed it
stops doing useful work after about the 40th file (out of several hundred).

When Axiom became open source I moved the system back to GCL because I could not
understand how to build a CCL system. I plan to revisit this in the future and document
the process so others can follow it as well as build Makefiles to automate it.

0.8. CHANGING GCL VERSIONS 39

0.7.3 CMU CL

CMU CL grew out of the Carnegie-Mellon University SPICE project. That project studied
the issues involved in building an optimizing compiler for common lisp. Axiom, back when
it was Scratchpad at IBM, ran on CMU CL. Indeed, a lot of the lisp-level optimizations are
due to use of the CMU CL compiler and the disassemble function.

0.7.4 Franz Lisp

Axiom, as Scratchpad, ran on Franz Lisp.

0.7.5 Lucid Common Lisp

Axiom, as Scratchpad, ran on Lucid Common Lisp.

0.7.6 Symbolics Common Lisp

Axiom, as Scratchpad, ran on Symbolics Common Lisp.

0.7.7 Golden Common Lisp

Axiom, as Scratchpad, ran on Golden Common Lisp. This was a PC version of Common
Lisp which appears to have died.

0.7.8 VM/LISP 370

Axiom, as Scratchpad, ran on VM/Lisp 370. This was an IBM version of lisp and was not
a common lisp. The .daase random access file format is an artifact of running on this lisp.

0.7.9 Maclisp

Axiom, as Scratchpad, ran on Maclisp. This was an early MIT version of lisp and is not
common lisp. Many of the funny function names that have slightly different semantics than
their common lisp counterparts still exist in the system as macros due to this lisp.

0.8 Changing GCL versions

Axiom lives on GNU Common Lisp. Axiom adds C code to the lisp image. Axiom caches
versions to ensure that nothing breaks. Changing GCL versions has introduced subtle bugs
at various times. The steps necessary to introduce a new version are

1. Add the latest GCL sources to Axiom

2. Update the patches to the new version

3. create diff -Naur patches to the gcl sources

40 CONTENTS

4. update lsp/Makefile.pamphlet to apply the patch at build

5. add a new chunk to lsp/Makefile.pamphlet to build gcl-2.6.10

6. Change the GCLVERSION to point at the new sources

7. change the Makefile to match Makefile.pamphlet

We assume in the following that $AXHOME is the home directory and that Axiom lives in the
silver subdirectory.

In more detail these steps are:

1. Add the lateset GCL sources to Axiom

(a) Download the latest GCL from gnu.org
For these instructions assume the file is

gcl-Version_2_6_10.tar.gz

(b) move the tar file into /tmp
We are going to make changes to the distribution via patches

(c) untar the file

tar -zxf gcl-Version_2_6_10.tar.gz

(d) cd to the untarred directory

cd gcl-Version_2_6_10

(e) rename the gcl directory
Camm follows a convention that the top level directory in the tar file is called gcl.
Since we maintain several past versions we need to rename this and re-tar it

mv gcl gcl-2.6.10

(f) rename gcl to use our naming convention

tar -zcf gcl-2.6.10.tgz gcl-2.6.10

(g) We move the original, renamed, retarred file to the zip directory

mv gcl-2.6.10.tgz $AXHOME/silver/zips

(h) We have to make sure to include the new file in the git commit

cd $AXHOME/silver

(i) Tell git we care about the file

git add zips/gcl-2.6.10.tgz

2. Update the patches to the new version

(a) find the previous patches

ls $AXHOME/silver/zips/gcl-2.6.8pre7*patch

(b) for each patch do (Step 3 ; Step 4)

3. create diff -Naur patches to the gcl sources

(a) assume we are looking at gcl-2.6.8pre7.h.linux.defs.patch
The name tells us what file to patch. From the above we can see that when Axiom
builds GCL it will

cd lsp/gcl-2.6.8pre7

because GCL is built by the lsp/Makefile.pamphlet. That Makefile will do a

0.8. CHANGING GCL VERSIONS 41

cd h

patch <gcl-2.6.8pre7.h.linux.defs.patch

which will apply the patch So we need to make a patch

(b) move to the subdirectory containing the file

cd /tmp/gcl-Version_2_6_10/gcl-2.6.10/h

(c) edit the ’linux.defs’ file to create the proper patch

(d) save the changed file as linux.defs.tpd

(e) in a shell, create a diff -Naur patch by

diff -Naur linux.defs linux.defs.tpd >gcl-2.6.10.h.linux.defs.patch

(f) move it to the zips directory

mv gcl-2.6.10.h.linux.defs.patch $AXHOME/silver/zips

cd $AXHOME/silver

git add zips/gcl-2.6.10.h.linux.defs.patch

4. update lsp/Makefile.pamphlet to apply the patch at build

(a) edit lsp/Makefile.pamphlet

(b) search for chunk gcl-2.6.8pre7.h.linux.defs.patch

(c) copy the chunk and name the new chunk gcl-2.6.10.h.linux.defs.patch

5. add a new chunk to lsp/Makefile.pamphlet to build gcl-2.6.10

(a) find the subsection “The GCL-2.6.8pre7 stanza”

(b) make a copy named “The GCL-2.6.10 stanza”

(c) add the new patches

(d) tell git we care

cd $AXHOME/silver

git add lsp/Makefile.pamphlet

6. Change the GCLVERSION to point at the new sources

(a) emacs $AXHOME/silver/Makefile.pamphlet

(b) search for #GCLVERSION, a Makefile comment line

(c) the last line is uncommented. Assume it reads GCLVERSION=gcl-2.6.8pre7
gcl-2.6.8pre7 was is the name of the current version we are replacing. We will use
this name in the next step

(d) put a # in front of the GCLVERSION variable to comment it out
We maintain the list of old, working patches. We also remember the names of the
prior GCLVERSIONS in case we have to back up

(e) Add a new line reading:

GCLVERSION=gcl-2.6.10

This will cause Axiom to untar this tgz file to get the sources and apply the
corresponding patches

7. change the Makefile to match Makefile.pamphlet

• compile the tangle program

(cd books ; gcc -o tangle tangle.c)

42 CONTENTS

• use books/tangle to extract the new Makefile

books/tangle Makefile.pamphlet >Makefile

0.9 Literate Programming

The Axiom source code was originally developed at IBM Research. It was sold to The
Numerical Algorithms Group (NAG) and was on the market as a commercial competitor to
Mathematica and Maple.

Axiom was withdrawn from the market in 2000 and released as free and open source soft-
ware in 2001. When the Axiom project was started on savannah, the GNU Free Software
Foundation site the source code had been rewritten into “pamphlet” files. The reasons for
this are twofold.

0.9.1 Pamphlet files

When the Axiom code was released it contained few comments. That made it very difficult
to understand what the code actually did. Unlike commercial software there would be no
group of individuals who would work on the project for its lifetime. Thus there needed to
be a way to capture the expertise and understanding underlying ongoing development.

Unlike any other piece of free and open source software Axiom will still give useful answers
30 years from now. Thus it is important, and worthwhile, to invest a large amount of effort
into documenting how these answers are arrived at and why the algorithms are written the
way they are.

The pamphlet file format follows Knuth’s idea of literate programming. Knuth made the
observation that a program should be a work designed to be read by humans. Making
the program readable by machine was a secondary consideration. Making documentation
primary and code secondary was a dramatic shift for a programmer.

Knuth created a file format that combined documentation and code. He created a tool called
“Web” which had two basic command, tangle and weave. The tangle command would be
run against a literate document and extract the source code, the weave command would be
run against the literate document and extract the TeX.

0.9.2 noweb

Knuth’s Web tool was specifically designed to use Pascal code. The “tangle” operation would
prettyprint the output according to the style rules of Pascal.

Axiom was written in a variety of languages, such as C and Lisp, and used tools such as
Makefiles which have their own syntax. Thus Web could not be used directly.

Axiom defines a new latex environment called chunk. This chunk environment makes the
pamphlet file a pure latex file. This eliminates the need for the weave operation. The tangle
operation only needs to occur while manipulating code, either during system build or end
user interaction. At both of these times the tangle operation can be built into the system
and hidden.

To support extracting chunks from pamphlet files Axiom now has a new top level command.

0.10. DATABASES 43

At the top level one can write:

)tangle filename

This will look for “filename.pamphlet” and extract the top level chunk which has the name
“*”.

The latest changeset introduces two related changes, gclweb and axiom.sty. Together these
changes allow optional syntactic changes to pamphlets. These changes will completely elim-
inate the need to weave files since now a pamphlet file can be a valid latex file. Tangle is the
only remaining command and it will eventually be an option on)compile, etc.

The src/interp/gclweb.lisp file introduces the ability to extract code from pamphlet files
while inside Axiom. The short description is that gclweb will now automatically distinguish
the type of chunk style (latex or noweb) based on the chunk name. It is a first step to a
native understanding of pamphlet files. Future work involves integrating it into commands
like)compile and adding commands like)tangle.

Tangle can also be called directly from lisp on a file from within Axiom:

)lisp (tangle "filename.pamphlet" "chunkname")

)lisp (tangle "filename.pamphlet" "chunkname" "filename.spad")

gclweb distinguishes the input syntax by looking at the first character of the chunkname. If
it is a ’<’ then noweb is used, otherwise latex.

The src/doc/axiom.sty.pamphlet introduces the new chunk environment. This is a com-
pletely compatible change and has no impact on existing pamphlets. The new syntax makes
pamphlet files = tex files so there is no need to use weave. The gclweb change has a com-
patible tangle function which can be invoked from inside Axiom.

\begin{chunk}{chunkname}

your code goes here

\end{chunk}

One feature of the latex chunk style is that latex commands work within the chunk. To get
typeset mathematics use \(and \)

-- This will typeset in a chunk \(x^2+\epsilon \)

-- And you can format things {\bf bold}

0.10 Databases

0.10.1 libcheck

The databases are built from the .kaf files in the .nrlib directories. (.kaf files are random
access files).

interp.exposed is a file that names all of the CDPs (Category, Domain, and Packages) and
classifies them. Only some CDPs are exposed because most are used to implement algebra
and are not intended to be user level functions. Exposing all of the functions causes much
ambiguity.

There is a function called libcheck (see src/interp/util.lisp.pamphlet) that will check nrlibs
vs interp.exposed. This is only partially functional as I see that changes were made to the
system which broke this function.

The libcheck function requires an absolute pathname to the int directory so call it thus:

44 CONTENTS

-->)lisp (libcheck "/axiom/int/algebra")

The main reason this function is broken is that the system now gets exposure informa-
tion from src/algebra/exposed.lsp.pamphlet. It appears that interp.exposed.pamphlet is no
longer used (although I made sure that both files have the same information). I’m going to
modify libcheck to use exposed.lsp in the future and eliminate all references in the system
to interp.exposed.

For the moment, however, the libcheck function is quite useful. It used to be run during
system build because I frequently ran into database problems and this function would alert
me to that fact. I’ll add it back into the Makefile once I elide interp.exposed.

0.10.2 asq

Axiom has several databases which contain information about domains, categories, and
packages. The databases are in a compressed format and are organized as random-access
files using numeric index values so it is hard to get at the stored information. However, there
is a command-line query function called asq (pronounced ask) that knows the format of the
files and can be used for stand-alone queries. For instance, if you know the abbreviation for
a domain but want to know what source file generated that domain you can say:

asq -so FOOBAR

and it will tell you the name of the algebra source file that defines FOOBAR.

0.11 Axiom internal representations

PRIMITIVE REPRESENTATIONS OF AXIOM OBJECTS

There are several primitive representations in axiom. These are:

boolean

this is represented as a lisp boolean

integer

this is represented as a lisp integer

small integer

this is represented as a lisp integer

small float

this is represented as a lisp float

list

this is represented as a lisp list

vector

this is represented as a lisp vector

record

there are 3 cases:

records of 1 element are a pair (element . nil)

0.11. AXIOM INTERNAL REPRESENTATIONS 45

records of 2 element are a pair (element1 . element2)

records of 3 or more are a vectors #<a b c...>

mapping

mappings are a spadcall objects. they are represented as a pair

(lispfn . env)

where the env is usually a type object. A spadcall rips this

pair open and applies the lispfn to its args with env as the

last arg.

union

there are 2 cases

if the object can be determined by a lisp predicate

(eg integer) then the union is just the object (eg 3)

itself since we can use lisp to decide which branch of

the union the object belongs to. that is, 3 is of the

integer branch in union(list,integer)

if the object cannot be determined then the object is

wrapped into a pair where the car of the pair is the

union branch name and the cdr of the pair is the object.

that is, given union(a:SUP,b:POLY(INT)) x might be (a . x)

note: if no tags are given in the union the system uses

consecutive integers, thus union(SUP,POLY(INT)) will give

a pair of (1 . x) or (2 . x) depending on the type of x

other types are built up of compositions of these primitive

types. a sparse univariate polynomial (SUP) over the integers

x**2+1

is represented as

Term := Record(k:NonNegativeInteger,c:R)

Rep := List Term

that is, the representation is a list of terms where each term

is a record whose first field is a nonnegative integer (the

exponent) and the second field is a member of the coefficient

ring. since this is a record of length 2 it is represented as

a pair. thus, the internal form of this polynomial is:

((2 . 1) (0 . 1))

a more complex object (recursively defined) is POLY(INT). given

x**2+1

as a POLY(INT) we look at its representation and see:

D := SparseUnivariatePolynomial($)

VPoly := Record(v:VarSet,ts:D)

Rep := Union(R,VPoly)

46 CONTENTS

so first we find that we are a member of the second form of the

union and since this is an untagged union the system uses 2 as

the tag. thus the first level of internal representation is:

(2 . <a VPoly object>)

next we need to define the VPoly object. VPolys are records of

length 2 so we know they are represented by a pair. the car of

the pair is a VarSet. the cdr is a D which is a

SparseUnivariatePolynomial. Thus we consider this to be a poly

in x (at the top level) and we get:

(2 . (x . <an SUP>))

the SUP is over the SparseMultivariatePolynomials (SMP) so the

representation is recursive. Since an SUP is represented as a

list of

(non-negative int . coefficient)

one per term and we have 2 terms we know the next level of

structure is:

(2 . (x . ((2 . <an SMP>) (0 . <an SMP>))))

the SMP is just the integers so it fits into the first branch

of the union and each SMP looks like:

(uniontag . value)

in this case, being the first branch we get

(2 . (x . ((2 . (1 . 1)) (0 . (1 . 1)))))

as the internal representation of

x**2 + 1

what could be easier?

0.12 Spad to internal function calling

0.12.1 getdatabse output

GETDATABASE(’Permutation, ’OPERATIONALIST)$Lisp

generates the output

(($unique)

(~= (((Boolean) $ $) () T ELT))

(sort (((List $) (List $)) 76 T ELT))

(sign (((Integer) $) 59 T ELT))

0.12. SPAD TO INTERNAL FUNCTION CALLING 47

(sample (($) () T CONST))

(recip (((Union $ "failed") $) () T ELT))

(order (((NonNegativeInteger) $) 57 T ELT))

(orbit (((Set #1) $ #1) 48 T ELT))

(one? (((Boolean) $) () T ELT))

(odd? (((Boolean) $) 62 T ELT))

(numberOfCycles (((NonNegativeInteger) $) 60 T ELT))

(movedPoints (((Set #1) $) 41 T ELT))

(min (($ $ $) () (OR (has #1 (Finite)) (has #1 (OrderedSet))) ELT))

(max (($ $ $) () (OR (has #1 (Finite)) (has #1 (OrderedSet))) ELT))

(listRepresentation

(((Record (: preimage (List #1)) (: image (List #1))) $) 35 T ELT))

(latex (((String) $) () T ELT))

(inv (($ $) 92 T ELT))

(hash (((SingleInteger) $) () T ELT))

(fixedPoints (((Set #1) $) 98 (has #1 (Finite)) ELT))

(even? (((Boolean) $) 58 T ELT))

(eval ((#1 $ #1) 46 T ELT))

(elt ((#1 $ #1) 93 T ELT))

(degree (((NonNegativeInteger) $) 43 T ELT))

(cycles (($ (List (List #1))) 84 T ELT))

(cyclePartition (((Partition) $) 52 T ELT))

(cycle (($ (List #1)) 21 T ELT))

(conjugate (($ $ $) () T ELT))

(commutator (($ $ $) () T ELT))

(coercePreimagesImages (($ (List (List #1))) 38 T ELT))

(coerceListOfPairs (($ (List (List #1))) 87 T ELT))

(coerceImages (($ (List #1)) 95 T ELT))

(coerce (((OutputForm) $) 83 T ELT) (($ (List (List #1))) 65 T ELT)

(($ (List #1)) 66 T ELT))

(^ (($ $ (PositiveInteger)) () T ELT)

(($ $ (NonNegativeInteger)) () T ELT) (($ $ (Integer)) () T ELT))

(One (($) 16 T CONST))

(>= (((Boolean) $ $) () (OR (has #1 (Finite)) (has #1 (OrderedSet))) ELT))

(> (((Boolean) $ $) () (OR (has #1 (Finite)) (has #1 (OrderedSet))) ELT))

(= (((Boolean) $ $) 44 T ELT))

(<= (((Boolean) $ $) () (OR (has #1 (Finite)) (has #1 (OrderedSet))) ELT))

(< (((Boolean) $ $) 64 T ELT))

(/ (($ $ $) () T ELT))

(** (($ $ (PositiveInteger)) () T ELT)

(($ $ (NonNegativeInteger)) () T ELT) (($ $ (Integer)) () T ELT))

(* (($ $ $) 22 T ELT)))

Sometimes in a getdatabase expression you will see:

(~= (((Boolean) $ $) () T ELT))

---------------------^^

and in other places there is a number

(sign (((Integer) $) 59 T ELT))

---------------------------^^

In general, when a large number appears it is a byte index into the compress.daase file.

Axiom would not fit on a laptop. We needed smaller databases. The solution to the problem
was to scan the datatases for common substrings, write the substring to compress.daase, and

48 CONTENTS

replace the substring by the byte offset.

When reading the database these numbers would be replaced by the substring from com-
press.daase using random access seeks based on the byte offset.

See book volume 5 for an explanation of the database file formats.

HOWEVER, in this case, the number has a different meaning which I will talk about below.

In summary, this shows what the following incantation means:

(sign (((Integer) $) () (has #1 (OrderedIntegralDomain))))

INTEGER inherits sign from OINTDOM (OrderedIntegralDomain)

OINTDOM inherits sign from ORDRING (OrderedRing)

ORDRING implements sign

since ORDRING is a category, the actual code lives in

ORDRING-.nrlib/code.lsp

The code for sign in ORDRING-.nrlib/code.lsp has the signature:

(DEFUN |ORDRING-;sign;SI;3| (|x| $))

We can ”decode” the meaning of the function name as

• ORDRING- the implementing file

• sign the function name

• SI returns SingleInteger (an old domain name)

• 3 the third function in the file (unique, to distinguish multiple functions with the same
name)

It takes 2 arguments,

• |x| which should be a SingleInteger

• $ which is the current domain (ORDRING-)

So it looks like I have the following structure

(NAME ((TARGETTYPE SOURCETYPE) ?1 CONDITION ?2))

but we are looking up ’sign’ in INTEGER so there is a condition on sign

Integer has OrderedRing ==> true

so that explains the condition field.

Here we show how Axiom finds the function implementation, looks up the function “in the
domain”, and calls it.

(sign (((Integer) $) 59 T ELT))

Now you’ve asked for ’sign’ from domain Permutation

(sign (((Integer) $) 59 T ELT))

The implementation for ’sign’ is in PERM.nrlib/code.lsp. It reads:

(defun |PERM;sign;$I;17| (|p| $)

(cond

((spadcall |p| (qrefelt $ 58)) 1)

(’t -1)))

which you would read as

0.12. SPAD TO INTERNAL FUNCTION CALLING 49

if (calling function in position 58 of myself) is true

then return 1

else return -1

How does Axiom find the function? It is in the infovec which is the “information vector”
containing information about the domain.

First we must make sure that PERM has the necessary domain information loaded (the
’infovec’).

-> [1,2,3]::PERM(INT)

Now, back to the ’sign’ function. You saw this:

(sign (((Integer) $) 59 T ELT)) (sample (($) () T CONST))

which is asking you to look up element 59 from the domain ($)

Note that $ actually means the infovec. So we are asking:

(elt (elt (getf (symbol-plist ’|Permutation|) ’|infovec|) 0) 59)

which results in:

|PERM;sign;$I;17|

so we “looked up” the function sign in the domain PERM.

Explaining in more detail, from the inside out by walking the runtime data structures we see

(symbol-plist ’|Permutation|)

returns the property list on the symbol Permutation which is where Axiom caches domain
information. Almost everything of interest about a domain resides on the property list,
shown here in all its glory.

(LOADED "/research/test/mnt/ubuntu/algebra/PERM.o"

SYSTEM:DEBUG (#:G1567 #:G1568)

|infovec| (

#(NIL NIL NIL NIL NIL NIL

(|local| |#1|) (QUOTE |Rep|) (|Boolean|)

(0 . <) (|PositiveInteger|) (6 . |lookup|)

(|Integer|) (|List| 6) (11 . |maxIndex|)

(16 . |elt|)

(CONS IDENTITY (FUNCALL (|dispatchFunction| |PERM;One;$;29|) $))

(|NonNegativeInteger|) (22 . |last|) (28 . |first|)

(34 . |concat|) |PERM;cycle;L$;26| |PERM;*;3$;28|

(40 . =) (46 . =) (52 . |elt|)

(58 . |list|) (63 . |position|) (69 . |delete|)

(|Mapping| 8 13 13) (|List| 13) (75 . |sort|)

(81 . |copy|) (86 . |member?|)

(|Record| (|:| |preimage| 13) (|:| |image| 13))

|PERM;listRepresentation;$R;9| (92 . |elt|)

(98 . ~=) |PERM;coercePreimagesImages;L$;10|

(|Set| 6) (104 . |construct|) |PERM;movedPoints;$S;11|

(109 . |#|) |PERM;degree;$Nni;12| |PERM;=;2$B;13|

(114 . |brace|) |PERM;eval;$2S;31| (119 . |insert!|)

|PERM;orbit;$SS;14| (|List| 12) (|Partition|)

(125 . |partition|) |PERM;cyclePartition;$P;15|

(130 . |convert|) (135 . |removeDuplicates|)

50 CONTENTS

(|List| $) (140 . |lcm|) |PERM;order;$Nni;16|

|PERM;even?;$B;18| |PERM;sign;$I;17| |PERM;numberOfCycles;$Nni;33|

(145 . |even?|) |PERM;odd?;$B;19| (150 . |maxIndex|)

|PERM;<;2$B;20| |PERM;coerce;L$;21| |PERM;coerce;L$;22|

(|Record| (|:| |cycl| 30) (|:| |permut| $$))

(|List| 67) (155 . |cons|) (|Mapping| 8 67 67)

(161 . |sort|) (|List| $$) (167 . |nil|)

(171 . |cons|) (177 . |reverse|) |PERM;sort;2L;23|

(|OutputForm|) (182 . |coerce|) (187 . |blankSeparate|)

(192 . |paren|) (197 . |outputForm|) (202 . |hconcat|)

|PERM;coerce;$Of;24| |PERM;cycles;L$;25| (207 . |second|)

(212 . =) |PERM;coerceListOfPairs;L$;27|

(|Vector| 6) (218 . |construct|) (223 . |elt|)

(229 . |new|) |PERM;inv;2$;30| |PERM;elt;$2S;32|

(235 . |coerce|) (240 . |coerceImages|) (245 . |index|)

(250 . |complement|) (255 . |fixedPoints|) (260 . |conjugate|)

(265 . +) (|Union| $ (QUOTE "failed"))

(|SingleInteger|) (|String|))

#(~= 271 |sort| 277 |sign| 282

|sample| 287 |recip| 291 |order| 296

|orbit| 301 |one?| 307 |odd?| 312

|numberOfCycles| 317 |movedPoints| 322 |min| 327

|max| 333 |listRepresentation| 339 |latex| 344

|inv| 349 |hash| 354 |fixedPoints| 359

|even?| 364 |eval| 369 |elt| 375

|degree| 381 |cycles| 386 |cyclePartition| 391

|cycle| 396 |conjugate| 401 |commutator| 407

|coercePreimagesImages| 413 |coerceListOfPairs| 418 |coerceImages| 423

|coerce| 428 ^ 443 |One| 461

>= 465 > 471 = 477

<= 483 < 489 / 495

** 501 * 519)

((|unitsKnown| . 0))

(#(0 0 0 0 3 0 0 0)

#(NIL

|Group&|

|Monoid&|

|SemiGroup&|

|OrderedSet&|

|SetCategory&|

|BasicType&|

NIL)

#((|PermutationCategory| 6)

(|Group|)

(|Monoid|)

(|SemiGroup|)

(|OrderedSet|)

(|SetCategory|)

(|BasicType|)

(|CoercibleTo| 77))

.

#(2 6 8 0 0 9 1 6 10 0 11 1 13 12 0 14 2 13 6 0 12

15 2 13 0 0 17 18 2 13 0 0 17 19 2 13 0 0 0 20 2 6

8 0 0 23 2 13 8 0 0 24 2 7 13 0 12 25 1 13 0 6 26

0.12. SPAD TO INTERNAL FUNCTION CALLING 51

2 13 12 6 0 27 2 13 0 0 12 28 2 30 0 29 0 31 1 13 0

0 32 2 13 8 6 0 33 2 30 13 0 12 36 2 6 8 0 0 37 1

39 0 13 40 1 39 17 0 42 1 39 0 13 45 2 39 0 6 0 47 1

50 0 49 51 1 50 49 0 53 1 49 0 0 54 1 12 0 55 56 1 12

8 0 61 1 30 12 0 63 2 68 0 67 0 69 2 68 0 70 0 71 0

72 0 73 2 72 0 2 0 74 1 72 0 0 75 1 6 77 0 78 1 77

0 55 79 1 77 0 0 80 1 77 0 12 81 1 77 0 55 82 1 13 6

0 85 2 39 8 0 0 86 1 88 0 13 89 2 88 6 0 12 90 2 7

0 17 13 91 1 6 0 12 94 1 0 0 13 95 1 6 0 10 96 1 39

0 0 97 1 0 39 0 98 1 50 0 0 99 2 50 0 0 0 100 2 0

8 0 0 1 1 0 55 55 76 1 0 12 0 59 0 0 0 1 1 0 101

0 1 1 0 17 0 57 2 0 39 0 6 48 1 0 8 0 1 1 0 8

0 62 1 0 17 0 60 1 0 39 0 41 2 3 0 0 0 1 2 3 0

0 0 1 1 0 34 0 35 1 0 103 0 1 1 0 0 0 92 1 0 102

0 1 1 1 39 0 98 1 0 8 0 58 2 0 6 0 6 46 2 0 6

0 6 93 1 0 17 0 43 1 0 0 30 84 1 0 50 0 52 1 0 0

13 21 2 0 0 0 0 1 2 0 0 0 0 1 1 0 0 30 38 1 0

0 30 87 1 0 0 13 95 1 0 0 13 66 1 0 0 30 65 1 0 77

0 83 2 0 0 0 12 1 2 0 0 0 17 1 2 0 0 0 10 1 0

0 0 16 2 3 8 0 0 1 2 3 8 0 0 1 2 0 8 0 0 44

2 3 8 0 0 1 2 0 8 0 0 64 2 0 0 0 0 1 2 0 0

0 12 1 2 0 0 0 17 1 2 0 0 0 10 1 2 0 0 0 0 22))

|lookupComplete|)

PNAME "Permutation"

DATABASE

#S(DATABASE

ABBREVIATION PERM

ANCESTORS NIL

CONSTRUCTOR NIL

CONSTRUCTORCATEGORY 2444459

CONSTRUCTORKIND |domain|

CONSTRUCTORMODEMAP

(((|Permutation| |#1|)

(|Join|

(|PermutationCategory| |#1|)

(CATEGORY |domain|

(SIGNATURE |listRepresentation|

((|Record| (|:| |preimage| #) (|:| |image| #)) $))

(SIGNATURE |coercePreimagesImages| ($ (|List| (|List| |#1|))))

(SIGNATURE |coerce| ($ (|List| (|List| |#1|))))

(SIGNATURE |coerce| ($ (|List| |#1|)))

(SIGNATURE |coerceListOfPairs| ($ (|List| (|List| |#1|))))

(SIGNATURE |degree| ((|NonNegativeInteger|) $))

(SIGNATURE |movedPoints| ((|Set| |#1|) $))

(SIGNATURE |cyclePartition| ((|Partition|) $))

(SIGNATURE |order| ((|NonNegativeInteger|) $))

(SIGNATURE |numberOfCycles| ((|NonNegativeInteger|) $))

(SIGNATURE |sign| ((|Integer|) $))

(SIGNATURE |even?| ((|Boolean|) $))

(SIGNATURE |odd?| ((|Boolean|) $))

(SIGNATURE |sort| ((|List| $) (|List| $)))

(IF (|has| |#1| (|Finite|))

(SIGNATURE |fixedPoints| ((|Set| |#1|) $)) |noBranch|)

(IF (|has| |#1| (|IntegerNumberSystem|))

52 CONTENTS

(SIGNATURE |coerceImages| ($ (|List| |#1|)))

(IF (|has| |#1| (|Finite|))

(SIGNATURE |coerceImages| ($ #)) |noBranch|))))

(|SetCategory|))

(T |Permutation|))

COSIG (NIL T)

DEFAULTDOMAIN NIL

MODEMAPS 2443154

NILADIC NIL

OBJECT "PERM"

OPERATIONALIST

((|$unique|)

(~= (((|Boolean|) $ $) NIL . #0=(T . #1=(ELT))))

(|sort| (((|List| $) (|List| $)) 76 . #0#))

(|sign| (((|Integer|) $) 59 . #0#))

(|sample| (($) NIL T CONST))

(|recip| (((|Union| $ "failed") $) NIL . #0#))

(|order| (((|NonNegativeInteger|) $) 57 . #0#))

(|orbit| (((|Set| |#1|) $ |#1|) 48 . #0#))

(|one?| (((|Boolean|) $) NIL . #0#))

(|odd?| (((|Boolean|) $) 62 . #0#))

(|numberOfCycles| (((|NonNegativeInteger|) $) 60 . #0#))

(|movedPoints| (((|Set| |#1|) $) 41 . #0#))

(|min| (($ $ $) NIL

(OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))) . #1#))

(|max| (($ $ $) NIL

(OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))) . #1#))

(|listRepresentation|

(((|Record| (|:| |preimage| (|List| |#1|))

(|:| |image| (|List| |#1|))) $) 35 . #0#))

(|latex| (((|String|) $) NIL . #0#))

(|inv| (($ $) 92 . #0#))

(|hash| (((|SingleInteger|) $) NIL . #0#))

(|fixedPoints| (((|Set| |#1|) $) 98 (|has| |#1| (|Finite|)) . #1#))

(|even?| (((|Boolean|) $) 58 . #0#))

(|eval| ((|#1| $ |#1|) 46 . #0#))

(|elt| ((|#1| $ |#1|) 93 . #0#))

(|degree| (((|NonNegativeInteger|) $) 43 . #0#))

(|cycles| (($ (|List| (|List| |#1|))) 84 . #0#))

(|cyclePartition| (((|Partition|) $) 52 . #0#))

(|cycle| (($ (|List| |#1|)) 21 . #0#))

(|conjugate| (($ $ $) NIL . #0#))

(|commutator| (($ $ $) NIL . #0#))

(|coercePreimagesImages| (($ (|List| (|List| |#1|))) 38 . #0#))

(|coerceListOfPairs| (($ (|List| (|List| |#1|))) 87 . #0#))

(|coerceImages| (($ (|List| |#1|)) 95 . #0#))

(|coerce|

(((|OutputForm|) $) 83 . #0#)

(($ (|List| (|List| |#1|))) 65 . #0#)

(($ (|List| |#1|)) 66 . #0#))

(^ (($ $ (|PositiveInteger|)) NIL . #0#)

(($ $ (|NonNegativeInteger|)) NIL . #0#)

(($ $ (|Integer|)) NIL . #0#))

(|One| (($) 16 T CONST))

0.12. SPAD TO INTERNAL FUNCTION CALLING 53

(>= (((|Boolean|) $ $) NIL

(OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))) . #1#))

(> (((|Boolean|) $ $) NIL

(OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))) . #1#))

(= (((|Boolean|) $ $) 44 . #0#))

(<= (((|Boolean|) $ $) NIL

(OR (|has| |#1| (|Finite|)) (|has| |#1| (|OrderedSet|))) . #1#))

(< (((|Boolean|) $ $) 64 . #0#))

(/ (($ $ $) NIL . #0#))

(** (($ $ (|PositiveInteger|)) NIL . #0#)

(($ $ (|NonNegativeInteger|)) NIL . #0#)

(($ $ (|Integer|)) NIL . #0#))

(* (($ $ $) 22 . #0#)))

DOCUMENTATION 1609893

CONSTRUCTORFORM 1609883

ATTRIBUTES 1614391

PREDICATES 1614406

SOURCEFILE "bookvol10.3.pamphlet"

PARENTS NIL

USERS NIL

DEPENDENTS NIL

SPARE NIL))

There are many things on the property list which looks like

(symbol1 thing1 symbol2 thing2 ... symboln thingn)

In the PERM case we see

(LOADED "/research/silver/mnt/algebra/PERM.o"

|infovec| (#<vector> #<vector>...)

....)

We can get the |infovec| off the property list with the call

(getf (symbol-plist ’—Permutation—) ’—infovec—)

is a request to search the property list for the symbol —infovec— and return the value,
which is the domain ”information vector”.

You can see this vector if you look in PERM.nrlib/code.lsp. At the bottom of that file you’ll
see:

(SETF (GET (QUOTE |Permutation|) (QUOTE |infovec|))

which uses SETF to put the infovec on the property list of PERM. This information vector
contains information for function lookup. This vector gets created when we ”instantiate”
PERM.

The infovec is a list with the structure

(#<vector 08ea516c>

#<vector 08ea5150>

((|unitsKnown| . 0))

(#<vector 08ea50fc>

#<vector 08ea5134>

#<vector 08ea5118> . #<vector 08ea50e0>)

|lookupComplete|)

So, now that we have the infovec, back to the game...

54 CONTENTS

(elt (getf (symbol-plist ’|Permutation|) ’|infovec|) 0)

This gets the 0th element out of the infovec list which is a vector of the name of every
function Permutation implements. We look up function names in this list, in particular, 59:

(elt (elt (getf (symbol-plist ’|Permutation|) ’|infovec|) 0) 59)

looks into this vector of names at the 59th element which returns

|PERM;sign;$I;17|

The SPAD form of this function reads:

sign(p) ==

even? p => 1

-1

The lisp form (see PERM.nrlib/code.lsp) reads:

(defun |PERM;sign;$I;17| (|p| $)

(cond

((spadcall |p| (qrefelt $ 58)) 1)

(’t -1)))

We call the |PERM;sign;$I;17| which takes 2 arguments

The first of which is the permutation and the second is the infovec for the PERM domain.

The (qrefelt $ 58) uses the above dance to look up a function in the infovec at the 58th
position... which returns

|PERM;even?;$B;18|

The spadcall calls |PERM;even?;$B;18| with the value of |p|.

If we look in the domain Permutation for the implementation of even?

even?(p) == even?(#(p.1) - numberOfCycles p)

which in PERM.nrlib/code.lsp we see

(defun |PERM;even?;$b;18|

(spadcall

(- (length (spadcall |p| 1 (qrefelt $ 25)))

(spadcall |p| (qrefelt $ 60)))

(qrefelt % 61)))

where

(qrefelt $ 25) ==> (52 . |elt|)

(qrefelt $ 60) ==> |PERM;numberOfCycles;$Nni;33|

(qrefelt $ 61) ==> (145. |even?|)

So, to summarize, the small magic numbers you see in the results are indexes into the
infovec, which is where Axiom stores things it needs to look up at runtime, usually function
references.

If there is () rather than a number than there is no need to do a function lookup.

Axiom execution is an alternating series of function lookups in the infovec followed by a call
of that function which results in a function lookup in the infovec followed by a call of that
function which results in

spadcall is a wrapper macro which takes the arguments and a function to call. qrefelt does
the infovec lookup.

0.13. AXIOM COMMAND 55

0.13 axiom command

The axiom command will eventually be a shell script. At the moment it is just a copy of
the interpsys image. However the whole Axiom system consists of several processes and the
axiom command starts these processes. The shell script will transparently replace the axiom
executable image which will be renamed to spadsys.

0.14 help command documentation

Axiom supports a)help command that takes a single argument. This argument is interpreted
as the name of a flat ascii file which should live in $AXIOM/doc/src/spadhelp.

0.14.1 help documentation for algebra

The help documentation for algebra files lives within the algebra pamphlet. The help chunk
contains the name of the domain, thus:

\begin{chunk}{thisdomain.help}

==

thisdomain examples

==

(documentation for this domain)

examplefunction foo

output

Type: thetype

See Also:

o)show thisdomain

o $AXIOM/bin/src/doc/algebra/thisfile.spad.dvi

\end{chunk}

The documentation starts off with the domain enclosed in two lines of equal signs. The
documentation is free format. Generally the functions are indented two spaces, the output
is indented 3 spaces, and the Type field has been moved toward the center of the line.

The “See Also:” section lists the domain with the “show” command and the path to the
source file in dvi format.

0.14.2 Adding help documentation in Makefile

There is a section in the src/algebra/Makefile.pamphlet that reads:

SPADHELP=\

${HELP}/AssociationList.help ${HELP}/BalancedBinaryTree.help \

which is essentially a list of all of the algebra help files. Each item in this list refers to a
stanza that looks like:

${HELP}/AssociationList.help: ${BOOKS}/bookvol10.3.pamphlet

56 CONTENTS

@echo 7000 create AssociationList.help from \

${BOOKS}/bookvol10.3.pamphlet

@${TANGLE} -R"AssociationList.help" ${BOOKS}/bookvol10.3.pamphlet \

>${HELP}/AssociationList.help

@cp ${HELP}/AssociationList.help ${HELP}/ALIST.help

@${TANGLE} -R"AssociationList.input" ${BOOKS}/bookvol10.3.pamphlet \

>${INPUT}/AssociationList.input

@echo "AssociationList (ALIST)" >>${HELPFILE}

Notice that the first line has an connection between the help file and the spad file that
contains it.

The second line gives debugging output containing a unique number for console debugging
purposes of failed builds.

The third line extracts the help file. Help files are part of the algebra books (bookvol10.2,
bookvol10.3, and bookvol10.4). The chunkname is the same as the Category, Domain, or
Package.

The fourth line copies the file with the long name of the domain to a file with the abbreviation
of the domain so the user can query the domain with either form using help.

The fifth line creates a regression test file for the help file. In the algebra each help file has an
associated regression test file to test all of the function calls shown in the help page. These
files are copied to the intermediate directory for regression testing.

The sixth line adds a line to the HELPFILE (see the variable in the src/algebra/Makefile).
This HELPFILE is concatenated onto the final help.help file in the MNT/doc/spadhelp
directory. Thus, when a user types)help with no argument they see a list of domains which
contain help information.

0.14.3 Using help documentation for regression testing

The fifth line extracts an input test file for the algebra. In general each help file is used to
create an input test file for regression testing.

There is a Makefile variable called REGRESS in the algebra Makefile:

REGRESS=\

AssociationList.regress BalancedBinaryTree.regress \

This is part of a Makefile that structure within the algebra Makefile. This Makefile gets
extracted by the Makefile in the input subdirectory. Thus there is a connection between the
two Makefiles (algebra and input). This algebra regression Makefile goes by the chunk name
algebra.regress. It contains a list of regression files and a single stanza:

%.regress: %.input

@ echo algebra regression testing $*

@ rm -f $*.output

@ echo ’)read $*.input’ | ${TESTSYS}

@ echo ’)lisp (regress "$*.output")’ | ${TESTSYS} \

| egrep -v ’(Timestamp|Version)’ | tee $*.regress

The input Makefile extracts algebra.regress and then calls make to process this file.

This keeps the regression test list in the algebra Makefile.

0.15. DEBUGSYS 57

0.14.4 help documentation as algebra test files

0.15 debugsys

The “debugsys” executable is the “interpsys” image but it is built using the interpreted lisp
code rather than using compiled lisp code. This will make it slower but may, in certain cases,
give much better feedback in case of errors. If you find you need to use debugsys you’re really
doing deep debugging. It isn’t useful for much else. It can be started by typing:

export AXIOM=/home/axiomgnu/new/mnt/linux

/home/axiomgnu/new/obj/linux/bin/debugpsys

Notice that this image lives in the “obj” subtree. It is not shipped with the “final” system
image as only developers could find it useful.

0.15.1 debugging hyperdoc

Hyperdoc will sometimes exit and also kill the AXIOMsys image with no error message. One
way to get around this is to replace the AXIOMsys image with the debugsys image:

1. mv $AXIOM/bin/AXIOMsys $AXIOM/bin/AXIOMsys.backup
This keeps the failing axiomsys image around for later restoration.

2. cp obj/sys/bin/debugsys $AXIOM/bin/AXIOMsys
This puts an interpreted version of axiom in place of the compiled form

3. axiom
Now we are running a fully interpreted form and the error messages are much more
informative.

0.16 Understanding a compiled function

Suppose we stop a program at a function call to some low level lisp function, say ONEP. We
can do that by entering

)trace ONEP)break

at the Axiom command prompt. Or at the lisp prompt:

(trace (ONEP :entry (break)))

Next we execute some function that will eventually call ONEP thus:

p := numeric %pi

Break: onep

Broken at ONEP. Type :H for Help.

BOOT>>

We have stopped and entered a lisp command prompt. We can enter any lisp expression
here and there are commands that begin with a “:” character. “:b” requests a backtrace of
the call stack, thus:

BOOT>>:b

Backtrace: funcall > system:top-level > restart > /read >

|upLET| > eval > |Pi| > |newGoGet| > |newGoGet| > ONEP

58 CONTENTS

Here we see that the function ONEP was called by the function newGoGet. Notice that
the name is surrounded by vertical bars. Vertical bars are a common lisp escape sequence
used to allow non-standard characters to occur in symbol names. Common lisp is not case
sensitive. Boot code is case sensitive. Thus symbol names that were written in Boot tend
to have escape sequence characters around the name.

Now that we see the simple backtrace we can ask for a more complex one. The command
is “:bt”. It shows more detail about each level of call on the invocation history stack (ihs)
including the function name, its arguments and the depth of the invocation history stack
([ihs=13]):

BOOT>>:bt

#0 ONEP {1=nil,} [ihs=13]

#1 newGoGet {g3629=("0" (#<vector 08b34bb4> 45 . |char|)),

loc1=#<compiled-function |CHAR;cha...} [ihs=12]

#2 newGoGet {g3629=("%pi" (#<vector 08b34bec> 0 . |coerce|)),

loc1=(#<vector 08b34bec> 0 . |c...} [ihs=11]

#3 Pi {g109299=nil,loc1=nil,loc2=#<hash-table 082992f4>,

loc3=|Pi|,loc4=15,loc5=#<vecto...} [ihs=10]

#4 EVAL {loc0=nil,loc1=nil,loc2=nil,

loc3=#<compiled-function |Pi|>} [ihs=9]

#5 upLET {t=(#<vector 08b34d04> #<vector 08b34ce8>

(#<vector 08b34ccc> (#<vector 08b34c08...} [ihs=8]

#6 /READ {loc0=#p"/home/axiomgnu/new/src/input/algbrbf.input",

loc1=nil,loc2=nil,loc3=nil,...} [ihs=7]

#7 RESTART {loc0=((|read|

|/home/axiomgnu/new/src/input/algbrbf.input|)),

loc1=|/home/axiomg...} [ihs=6]

#8 TOP-LEVEL {loc0=nil,loc1=0,loc2=0,loc3=nil,loc4=nil,

loc5=nil,loc6=nil,loc7=nil,loc8=nil,lo...} [ihs=5]

#9 FUNCALL {loc0=#<compiled-function system:top-level>} [ihs=4]

BOOT>>:bl

>> (LAMBDA-BLOCK ONEP (&REST X) ...)():

X : (1)

NIL

We can ask to see the local variables that are used at the current level of the invocation
history stack. The command is “:bl” thus:

BOOT>>:bl

>> (LAMBDA-BLOCK ONEP (&REST X) ...)():

X : (1)

NIL

We can move up the stack one level at a time looking at the function that called the current
function (the previous function) using “:p” thus:

BOOT>>:p

Broken at |NEWGOGET|.

And again, we can look at the variables that can be accessed locally:

BOOT>>:bl

>> newGoGet():

Local0(G3629): (0 (#<vector 08b34bb4> 45 . char))

Local(1): #<compiled-function CHAR;char;S$;20>

Local(2): 0

0.16. UNDERSTANDING A COMPILED FUNCTION 59

Local(3): #<vector 08b233f0>

Local(4): 1

NIL

Here we see that the function newGoGet is calling CHAR;char;S$;20 which is a mangled
form of the name of the original spad function. To decode this name we can see that the
CHAR portion is used to identify the domain where the function lives. This domain, CHAR,
comes from the source file “string.spad” which lives in “src/algebra/string.spad.pamphlet”.
To discover this we use the Axiom “asq” command with the “-so” (sourcefile) option at a
standard shell prompt (NOT in the lisp prompt) thus:

asq -so CHAR

string.spad

If we look at the code in the string.spad.pamphlet file we find the following code signature:

char: String -> %

++ char(s) provides a character from a string s of length one.

and it’s implementation code:

char(s:String) ==

(#s) = 1 => s(minIndex s) pretend %

error "String is not a single character"

The string.spad file can be compiled at the command prompt. In particular, we can compile
only the CHAR domain out of this file thus:

)co string.spad)con CHAR

This will produce a directory called CHAR.NRLIB containing 3 files:

ls CHAR.NRLIB

code.lsp index.kaf info

The info file contains information used by the spad compiler. We can ignore it for now.

The index.kaf file contains information that will go into the various Axiom database (.daase)
files. The kaf file format is a random access file. The first entry is an integer that will be an
index into the file that can be used in an operating system call to seek. In this case it will
be an index which is the last used byte in the file. Go to the last expression in the file and
we find:

(

("slot1Info" 0 11302)

("documentation" 0 9179)

("ancestors" 0 9036)

("parents" 0 9010)

("abbreviation" 0 9005)

("predicates" 0 NIL)

("attributes" 0 NIL)

("signaturesAndLocals" 0 8156)

("superDomain" 0 NIL)

("operationAlist" 0 7207)

("modemaps" 0 6037)

("sourceFile" 0 5994)

("constructorCategory" 0 5434)

("constructorModemap" 0 4840)

("constructorKind" 0 4831)

("constructorForm" 0 4817)

60 CONTENTS

("NILADIC" 0 4768)

("compilerInfo" 0 2093)

("loadTimeStuff" 0 20))

This is a list of triples. Each triple has two interesting parts, the name of the data and the
seek index of the data in the index.kaf file. So, for instance, if you want to know what source
file contains this domain you can start at the top of the index.kaf file, move ahead 5994 bytes
and you will be at the start of the string:

"/usr/local/axiom/src/algebra/string.spad"

The information in the index.kaf files are collected into the special databases (the .daase
files). The stand-alone “asq” function can query these databases and answer questions. The
kind of questions you can ask are the names in the list above.

The third file in the CHAR.NRLIB directory is the code.lsp file. This is the actual common
lisp code that will be executed as a result of calling the various spad functions. The spad
code from the char command was:

char(s:String) ==

(#s) = 1 => s(minIndex s) pretend %

error "String is not a single character"

which got compiled into the common lisp code:

(DEFUN |CHAR;char;S$;20| (|s| |$|)

(COND

((EQL (QCSIZE |s|) 1)

(SPADCALL |s|

(SPADCALL |s| (QREFELT |$| 47))

(QREFELT |$| 48)))

((QUOTE T)

(|error| "String is not a single character"))))

To understand what is going on here we need to understand the low level details of Ax-
iom’s interface to Common Lisp. The “Q” functions are strongly typed (Quick) versions
of standard common lisp functions. QCSIZE is defined in src/interp/vmlisp.lisp.pamphlet
thus:

(defmacro qcsize (x)

‘(the fixnum (length (the simple-string ,x))))

This macro will compute the length of a string.

QREFELT is defined in the same file as:

(defmacro qrefelt (vec ind)

‘(svref ,vec ,ind))

This macro will return the element of a vector.

SPADCALL is defined in src/interp/macros.lisp.pamphlet as:

(defmacro SPADCALL (&rest L)

(let ((args (butlast l)) (fn (car (last l))) (gi (gensym)))

‘(let ((,gi ,fn))

(the (values t) (funcall (car ,gi) ,@args (cdr ,gi))))

))

This macro will call the last value of the argument list as a function and give it everything
but the last argument as arguments to the function. There are confusing historical reasons
for this I won’t go into here.

0.16. UNDERSTANDING A COMPILED FUNCTION 61

So you can see that these are simply macros that will expand into highly optimizable (the
optimizations depend on the abilities of the common lisp compiler) common lisp code.

The common lisp code computes the length of the string s. If the length is 1 then we call
the minIndex function from string on s. The minIndex function is found by looking “in the
domain”. The compiler changes the minIndex function call into a reference into a vector.
The 47th element of the vector contains the function minIndex.

(SPADCALL |s| (QREFELT |$| 47))

This code is equivalent (ignoring the gensyms) to the call

(minIndex s)

The $ symbol refers to the domain. At runtime this amounts to a lookup of the “infovec”.
The compile-time infovec shown here:

(setf (get

(QUOTE |Character|)

(QUOTE |infovec|))

(LIST

(QUOTE

#(NIL

NIL

NIL

NIL

NIL

NIL

(QUOTE |Rep|)

(|List| 28)

(|PrimitiveArray| 28)

(0 . |construct|)

(QUOTE |OutChars|)

(QUOTE |minChar|)

(|Boolean|)

|CHAR;=;2$B;1|

|CHAR;<;2$B;2|

(|NonNegativeInteger|)

|CHAR;size;Nni;3|

(|Integer|)

|CHAR;char;I$;6|

(|PositiveInteger|)

|CHAR;index;Pi$;4|

|CHAR;ord;$I;7|

|CHAR;lookup;$Pi;5|

(5 . |coerce|)

|CHAR;random;$;8|

|CHAR;space;$;9|

|CHAR;quote;$;10|

|CHAR;escape;$;11|

(|OutputForm|)

|CHAR;coerce;$Of;12|

(|CharacterClass|)

(10 . |digit|)

(|Character|)

(14 . |member?|)

|CHAR;digit?;$B;13|

62 CONTENTS

(20 . |hexDigit|)

|CHAR;hexDigit?;$B;14|

(24 . |upperCase|)

|CHAR;upperCase?;$B;15|

(28 . |lowerCase|)

|CHAR;lowerCase?;$B;16|

(32 . |alphabetic|)

|CHAR;alphabetic?;$B;17|

(36 . |alphanumeric|)

|CHAR;alphanumeric?;$B;18|

(|String|)

|CHAR;latex;$S;19|

(40 . |minIndex|)

(45 . |elt|)

|CHAR;char;S$;20|

|CHAR;upperCase;2$;21|

|CHAR;lowerCase;2$;22|

(|SingleInteger|)))

(QUOTE

#(|~=| 51 |upperCase?| 57 |upperCase| 62 |space| 67

|size| 71 |random| 75 |quote| 79 |ord| 83 |min| 88

|max| 94 |lowerCase?| 100 |lowerCase| 105 |lookup| 110

|latex| 115 |index| 120 |hexDigit?| 125 |hash| 130

|escape| 135 |digit?| 139 |coerce| 144 |char| 149

|alphanumeric?| 159 |alphabetic?| 164 |>=| 169 |>| 175

|=| 181 |<=| 187 |<| 193))

(QUOTE NIL)

(CONS

(|makeByteWordVec2| 1 (QUOTE (0 0 0 0 0 0)))

(CONS

(QUOTE #(NIL |OrderedSet&| NIL |SetCategory&|

|BasicType&| NIL))

(CONS

(QUOTE

#((|OrderedFinite|)

(|OrderedSet|)

(|Finite|)

(|SetCategory|)

(|BasicType|)

(|CoercibleTo| 28)))

(|makeByteWordVec2| 52

(QUOTE

(1 8 0 7 9 1 6 0 17 23 0 30 0 31 2 30 12 32 0 33

0 30 0 35 0 30 0 37 0 30 0 39 0 30 0 41 0 30 0

43 1 45 17 0 47 2 45 32 0 17 48 2 0 12 0 0 1 1

0 12 0 38 1 0 0 0 50 0 0 0 25 0 0 15 16 0 0 0 24

0 0 0 26 1 0 17 0 21 2 0 0 0 0 1 2 0 0 0 0 1 1 0

12 0 40 1 0 0 0 51 1 0 19 0 22 1 0 45 0 46 1 0 0

19 20 1 0 12 0 36 1 0 52 0 1 0 0 0 27 1 0 12 0 34

1 0 28 0 29 1 0 0 45 49 1 0 0 17 18 1 0 12 0 44 1

0 12 0 42 2 0 12 0 0 1 2 0 12 0 0 1 2 0 12 0 0 13

2 0 12 0 0 1 2 0 12 0 0 14))))))

(QUOTE |lookupComplete|)))

0.16. UNDERSTANDING A COMPILED FUNCTION 63

Which is a 5 element list. This contains all kinds of information used at runtime by the
compiled routines. In particular, functions are looked up at runtime in the first element of
the infovec list. This first element contains 53 items (in this domain). Item 47 is

(40 . |minIndex|)

which is the minIndex function we seek.

At runtime this infovec lives on the property list of the domain name. The domain name of
CHAR is Character. So we look on the property list (a lisp a-list) thus:

BOOT>>(symbol-plist ’|Character|)

(SYSTEM:DEBUG (#:G85875)

|infovec| (#<vector 08b34380>

#<vector 08b34364>

NIL

(#<bit-vector 08b34310>

#<vector 08b34348>

#<vector 08b3432c> . #<vector 08b342f4>)

|lookupComplete|)

LOADED "/home/axiomgnu/new/mnt/linux/algebra/CHAR.o"

NILADIC T

PNAME "Character"

DATABASE #S(DATABASE

ABBREVIATION CHAR

ANCESTORS NIL

CONSTRUCTOR NIL

CONSTRUCTORCATEGORY 228064

CONSTRUCTORKIND |domain|

CONSTRUCTORMODEMAP 227069

COSIG (NIL)

DEFAULTDOMAIN NIL

MODEMAPS 227404

NILADIC T

OBJECT "CHAR"

OPERATIONALIST 226402

DOCUMENTATION 152634

CONSTRUCTORFORM 152626

ATTRIBUTES 154726

PREDICATES 154731

SOURCEFILE "string.spad"

PARENTS NIL

USERS NIL

DEPENDENTS NIL

SPARE NIL))

This list is organized contains many runtime lookup items (notice the PNAME entry is
“Character”, the LOADED entry says where the file came from, the DATABASE structure
entry has database indicies (see daase.lisp.pamphlet for the structure definition), etc).

Lets get the property list

BOOT>>(setq a (symbol-plist ’|Character|))

(SYSTEM:DEBUG (#:G85875)

|infovec| (#<vector 08b34380>

64 CONTENTS

#<vector 08b34364>

NIL

(#<bit-vector 08b34310>

#<vector 08b34348>

#<vector 08b3432c> . #<vector 08b342f4>)

|lookupComplete|)

LOADED "/home/axiomgnu/new/mnt/linux/algebra/CHAR.o"

NILADIC T

PNAME "Character"

DATABASE #S(DATABASE

ABBREVIATION CHAR

ANCESTORS NIL

CONSTRUCTOR NIL

CONSTRUCTORCATEGORY 228064

CONSTRUCTORKIND |domain|

CONSTRUCTORMODEMAP 227069

COSIG (NIL)

DEFAULTDOMAIN NIL

MODEMAPS 227404

NILADIC T

OBJECT "CHAR"

OPERATIONALIST 226402

DOCUMENTATION 152634

CONSTRUCTORFORM 152626

ATTRIBUTES 154726

PREDICATES 154731

SOURCEFILE "string.spad"

PARENTS NIL

USERS NIL

DEPENDENTS NIL

SPARE NIL))

Next we get the infovec value

BOOT>>(setq b (fourth a))

(#<vector 08b34380>

#<vector 08b34364>

NIL

(#<bit-vector 08b34310>

#<vector 08b34348>

#<vector 08b3432c> . #<vector 08b342f4>)

|lookupComplete|)

Then we get the function table

BOOT>>(setq c (car b))

#<vector 08b34380>

In this common lisp (GCL) the array is identified by it’s memory address.

Notice that it has the right number of entries:

BOOT>>(length c)

53

0.17. THE AXIOM.INPUT STARTUP FILE 65

And we can ask for the 47th entry thus:

BOOT>>(elt c 47)

(40 . |minIndex|)

Later we end up calling the 48th function (which is elt and returns the actual character in
the string). We ask for it:

BOOT>>(elt c 48)

(45 . |elt|)

At this point we’ve reached the metal. Common lisp will evaluate the macro-expanded
functions and execute the proper code. Essentially the compiler has changed all of our spad
code into runtime table lookups.

0.17 The axiom.input startup file

If you add a file in your home directory called “.axiom.input” it will be read and executed
when Axiom starts. This is useful for various reasons including setting various switches.
Mine reads:

)lisp (pprint ‘‘running /root/.axiom.input’’)

)set quit unprotected

)set message autoload off

)set message startup off

You can execute any command in .axiom.input. Be aware that this will ALSO be run while
you are doing a “make” so be careful what you ask to do.

0.18 Where are Axiom symbols stored?

You’d think that your question about where the symbol is interned would be easy to answer
but it is not. The top level loop uses Bill Burge’s dreaded zipper parser. You can see it in
action by executing the following sequence:

)lisp (setq $DALYMODE t)

; this is a special mode of the top level interpreter. If

; $DALYMODE is true then any top-level form that begins

; with an open-paren is considered a lisp expression.

; For almost everything I ever do I end up peeking at the

; lisp so this bit of magic helps.

(trace |intloopProcessString|)

; from int-top.boot.pamphlet

(trace |intloopProcess|)

; the third argument is the "zippered" input

(trace |intloopSpadProcess|)

; now it is all clear, no? sigh.

(trace |phInterpret|)

; from int-top.boot.pamphlet

(trace |intInterpretPform|)

; from intint.lisp.pamphlet

66 CONTENTS

(trace |processInteractive|)

; from i-toplev.boot.pamphlet

(setq |$reportInstantiations| t)

; shows what domains were created

(setq |$monitorNewWorld| t)

; watch the interpreter resolve operations

(trace |processInteractive1|)

; from i-toplev.boot.pamphlet

ah HA! I remember now. There is the notion of a “frame” which is basically a namespace
in Axiom or an alist in Common Lisp. It is possible to maintain different “frames” and
move among them. There is the notion of the current frame and it contains all the defined
variables. At any given time the current frame is available as $InteractiveFrame. This
variable is used in processInteractive1. If you do:

a:=7

(pprint |$InteractiveFrame|)

you’ll see —a— show up on the alist. When you do the

pgr:=MonoidRing(Polynomial PrimeField 5, Permutation Integer)

p:pgr:=1

you’ll see —p— show up with 2 other things: (—p— mode value) where mode is the “type”
of the variable. The value is the internal value. In this case MonoidRing has an internal
representation. You can find out what the internal representation of a MonoidRing is by
first asking where the source file is:

(do this at a shell prompt, not in axiom)

asq -so MonoidRing ==> mring.spad

-- or -- in Axiom type:

)show MonoidRing

and you’ll see a line that reads:

Issue)edit (yourpath)/../../src/algebra/mring.spad

If you look in mring.spad.pamphlet you’ll see line 91 that reads:

Rep := List Term

which says that we will store elements of type MonoidRing as a list of Term objects. Term
is defined in the same file (as a macro, which is what ’==>’ means in spad files) on line 43:

Term ==> Record(coef: R, monom: M)

0.19. TRANSLATING INDIVIDUAL BOOT FILES TO COMMON LISP 67

which means that elements of a MonoidRing are Lists of Records. The ’R’ is defined on line
42 as the first argument to MonoidRing which in this case is “Polynomial PrimeField 5”.
The “M” is also defined on line 42 as the second argument to MonoidRing and in this case
is “Permutation Integer”. So the real representation is

List Record(coef: Polynomial PrimeField 5,

monom: Permutation Integer)

In the $InteractiveFrame we printed out you can see in the value field that the value is:

(|value|

(|MonoidRing| (|Polynomial| (|PrimeField| 5))

(|Permutation| (|Integer|)))

WRAPPED ((0 . 1) . #<vector 08af33d4>))

which basically means that we know how the MonoidRing was constructed and what it’s
current value is. The (0 . 1) likely means that this is the zeroth (constant) term with a
leading coefficient of 1. This is just a guess as I haven’t decoded the representation of either
Polynomial PrimeField or Permutation Integer. You can do the same deconstruction of these
two domains by setting

pi:=Permutation Integer

z:pi:=1

pp5:=Polynomial PrimeField 5

w:pp5:=1

and following the same steps as above:

(pprint |$InteractiveFrame|)

)show pi

(find the source file)

(find the representation and decode it)

(pprint |$InteractiveFrame|)

)show pp5

(find the source file)

(find the representation and decode it)

Be sure to set $DALYMODE to nil if you plan to use Axiom for any real computation.
Otherwise every expression that begins with an open-paren will go directly to lisp.

0.19 Translating individual boot files to common lisp

If you are making changes to boot code it is sometimes helpful to check the generated lisp
code to ensure it does what you want. You can convert an individual boot file to common
lisp using the boottran::boottocl function:

)fin -- drop into common lisp

(boottran::boottocl "foo.boot")

68 CONTENTS

when you do this it creates a foo.clisp file in ../../int/interp

Alternatively if you work from the pamphlet file the process is more painful as you have to
do

)cd (yourpath)/int/interp

)sys tangle ../../src/interp/foo.boot.pamphlet >foo.boot

)fin

(boottran::boottocl "foo.boot")

(restart)

The)cd step tells axiom to cd to the int/interp subdirectory. The)sys tangle... extracts
the boot file from the pamphlet file The)fin step drops into common lisp The (bootran...
converts the foo.boot file to foo.clisp The (restart) re-enters the top level loop

0.20 Directories

For this discussion I assume that you have your system rooted at /spad and was build to
run on linux. These directories may not yet be in the CVS tree but are documented here so
they make sense when the show up.

The AXIOM variable

The usual setting of the AXIOM variable is /spad/mnt/linux. The name is composed of
three parts, the rooted path, in this case /spad, “mnt”, and the system you are running, in
this case linux. Builds for other systems will have other system names.

/spad

This is the usual root directory of the Axiom system. The name is historical, a contraction
of Scratchpad. This name can be anything provided the shell variable AXIOM contains the
new prefix.

/spad/mnt

This is a directory which contains files which are specific to a given platform. At a site
that contains multiple platforms this directory will contain a subdirectory for each type of
platform (e.g. linux, rios, ps2, rt, sun, etc).

/spad/mnt/linux

This directory contains the complete copy of the Axiom system for the linux system. This
is the ’mount point’ of the system. Executable systems (for RedHat) are shipped relative to
this point. In what follows, the ./ refers to /spad/mnt/linux.

**

There are several directories explained below. They are:

./bin -- user executables

./doc -- system documentation

./algebra -- algebra libraries

0.20. DIRECTORIES 69

./lib -- system executables

./etc -- I haven’t a clue....

**

0.20.1 The mnt/linux/bin directory

./bin

This is a directory of user executable commands, either at the top level or thru certain Axiom
system calls. Support executables live in ./lib

./bin/htadd

This adds pages to the Hyperdoc database (ht.db, which lives in ./doc/hypertex/pages;
hypertex, since we have a penchant for these things, is an historical name for Hyperdoc.
The single word ’lawyers’ will probably explain away a lot of name changes.)

./bin/spadsys

This is the Axiom interpreter. It is one of the functions started when the user invokes the
system using the spadsys command. Normally this command is run under the control of
sman (./lib/sman) and the console is under the control of clef (./bin/clef), the wonderous
command-line editor. It is possible to start spadsys standalone but it will not talk to Hy-
perdoc or graphics. Users who rlogin or use an ascii-only terminal (for historical reasons, no
doubt) can profit by invoking spadsys directly rather than using ./bin/axiom

./bin/axiom

This is a shell script that spins the world. It kicks off a whole tree of processes necessary to
perform the X-related magic we do. It expects the shell variable AXIOM to be set to the
’mount point’ (usually to /spad/mnt/linux).

./bin/clef

This is the wonderous command-line editor used by Axiom. It can be used in a stand-alone
fashion if you wish.

./bin/SPADEDFN

This script is invoked by the spad)fe command. It can be changed to invoke your favorite
editor. While you may invoke your editor, it may not run (as in, yes, I can invoke the devil
but will he come when I call?)

./bin/viewalone

This is a function to run the graphics in a stand-alone fashion. The Graphics package
(an amazing contribution by several very talented people, most notably Jim Wen and Jon

70 CONTENTS

Steinbach) is a C program that communicates with Axiom thru sockets. It will, however,
perform its miracles unaided if invoked by the sufficiently chaste...

./bin/hypertex

This is a function to run Hyperdoc (remember the penchant!) stand-alone. The Hyperdoc
package owes its existence to the efforts of J.M. Wiley and Scott Morrison. This function
works off ’pages’ that live in hypertex pages directory and are referenced in the “hyperdoc
database” called ht.db (for historical reasons, but you knew that). It is possible for creative
plagerists to figure out how to write their own pages and add them to the database (see
htadd above), thus gaining fame far and wide...

./bin/sys-init.lsp

This is a file of lisp code that gets loaded before Axiom starts. Thus, we distribute patches
by adding lisp (load ...) commands to this file. The sufficiently clever should have a field
day with this one. (All others should worship the sufficiently clever and send them money,
eh?)

./bin/init.lsp

This is a file of lisp code loaded if and only if you start spadsys in this directory. The user
can put a file of this name in her home directory and it will get loaded at startup with the
probable effect of injecting luser errors into the running system. sigh.

0.20.2 The mnt/linux/doc directory

./doc

The doc subdirectory contains system documentation.

./doc/command.list

This is a file of command completions used by clef when you hit the tab key. This is a little
known feature that will surprise someone someday (hopefully pleasantly).

./doc/book

This is an attempt at a book describing Axiom. It represents a combination of fantasy,
describing what never will be and history (remember the penchant?) describing what was.
Any description matching what is may be regarded as failure of the imagination and ignored.

./doc/compguide

This is an attempt to describe a compiler that doesn’t exist, never did exist, and never will
exist. It makes for entertaining reading so we included it.

0.20. DIRECTORIES 71

./doc/hypertex

This is the fabled Hyperdoc subdirectory where all of the pages and the database live, along
with several other obscure files needed to make the wizards look good.

./doc/hypertex/pages

This is where the ’pages’ live. Each file ending in .ht contains several pages related, if
only by chance, to the same topic. You may find it instructive to try to read some of
these files. Hyperdoc was learned by the ’campfire’ method (sitting around the fire passing
along historical facts by word of mouth) and will probably continue to propagate by the
same method. Ye may become th’ local scribe and soothsayer if ye study the writings here
below....

./doc/hypertex/pages/rootpage.ht

This file is the magic ’first page’ that gets displayed when Hyperdoc starts. There is a macro
(see ./doc/hypertex/pages/util.ht) called /localinfo which is intended to allow the luser to
add her own pages without modifying the system copies. How this is done was lost when
the campfire got rained out.

./doc/hypertex/pages/util.ht

This file contains the macros used to extend the system commands. The syntax is hard to
learn (it was hard to write, it ought to be hard to learn, eh?).

./doc/hypertex/pages/ht.db

This is the Hyperdoc database. It is updated using ./bin/htadd which must be run whenever
a page in this directory gets changed. The necessary arguments to htadd are obvious to those
in the know.

./doc/hypertex/bitmaps

There are several pretty bitmaps used as cursors, buttons and general decorations that hide
in this directory.

./doc/hypertex/ht.files

This is a list of some Hyperdoc files. It seems to have no purpose in life but it is useful as a
koan, as in, What is the length of half a list?

./doc/hypertex/ht.db

Another copy of the Hyperdoc database. It isn’t clear which one is the real one so I guess
we keep both. Maybe we’ll figure it out at the friday night campfire provided we don’t get
too lit.

72 CONTENTS

./doc/hypertex/gloss.text

The text used in the glossary. Many magic words lie herein. Some are spoken only by
campfire gurus.

./doc/library

This is a directory of Hyperdoc pages that can be freely smashed, trashed and generally
played with. It uses the /localinfo connection to set up a ’library’ containing Hyperdoc
pages keyed to your favorite textbook. It is interesting to set the shell variable
HTPATH=/spad/mnt/linux/doc/library:
/spad/mnt/linux/doc/hypertex/pages
and then start Hyperdoc. See the file ./doc/library/macros.ht

./doc/msgs

This directory contains several ’message databases’; the only one of which we seem to care
about being s2-us.msgs but I can’t swear to it.

./doc/spadhelp

This is a directory containing help information for a copy of the system that once ran long
ago and far away. It is kept for historical reasons (programmers NEVER throw anything
away).

./doc/viewports

There are several dozen truly fine pictures in Axiom. We have created them and hidden
them here. Hyperdoc will insert them at various places (where the text gets too boring,
hopefully) and you can click on them there. They get snarfed from here. It is possible to
view them with stand-alone graphics but don’t ask me how. I missed that campfire due to
poisoned marshmellows.

./doc/complang

This directory contains fantasy from the past as opposed to facts from the future. Ignore it.

./doc/ug

This directory left intentionally blank :-) (an old IBM joke).

./doc/tex

These are the files necessary to create the famous goertler document. If you figure out how
to use these please send us the instructions and we will add a log to the campfire with your
name on it (a rare honor indeed as luser’s names rarely reach the inner circle).

./doc/htex

0.20. DIRECTORIES 73

This directory contains the original tex-like source for the luser’s guide. There are many
functions that munch on these between here and paper but this is approximately where they
start. If you do your own algebra perchance you might document it like this. Figuring out
the syntax will also get your name into the inner circle (probably connnected with a smirk
:-))

./doc/newug

Please don’t ask me. I couldn’t begin to guess. You wouldn’t believe how many ’new’ things
there are that really aren’t. We have more NEW things than Madison Avenue has NEW
laundry soap.

./doc/gloss.text

This one is here because it is here. Existentially speaking, of course.

./doc/submitted

This was what the htex files said before history was rewritten... (and renamed?)

0.20.3 The mnt/linux/algebra directory

./algebra

This is where all of the interesting action lives. Each .NRLIB directory contains 2 files, a
code.o and an index.kaf* file. The code.o contains the executable algebra that gets loaded
into the system. The index.kaf* file contains all kinds of things like signatures, source paths,
properties and dried bat droppings. The documentation for each of these can be reached by
using the BROWSE feature of Hyperdoc.

./algebra/MODEMAP.daase

This is an inverted database that contains information gleaned from the index.kaf* files.
Without this there is no way to figure out which .NRLIB file to load. This database is
opened on startup and kept open.

./algebra/interp.exposed

This is a control file for the interpeter that limits the number of places to search for function
names.

0.20.4 The mnt/linux/etc directory

./lib

74 CONTENTS

This directory contains functions that get loaded by the system. Nothing in here is executable
by the user but the system needs these functions to run.

./lib/htrefs

./lib/htsearch

./lib/hthits

These three functions are used to search the Hyperdoc pages. There is no way in the current
system to request a search of those pages so these files are fascinating examples of history
in the making...

./lib/hypertex

This is Hyperdoc. What is in a name?

./lib/sman

This is sman, which comes before all. Methinks the name originated as a contraction of
superman, the name of a stack frame in a system long ago and far away (VMLisp) chosen
because a certain programmer had a penchant for comic books when he was young.

./lib/session

./lib/spadclient

These two files are processes started by sman for some reason or other. I can never remember
what they do or why. However, the campfire fails to smoke if they don’t work.

./lib/viewman

This is the controlling function for the graphics.

./lib/view2d

This is invoked when a 2 dimensional window is requested. This is provided mostly for those
math majors who never got over the insights from flatland.

./lib/view3d

This is invoked when a 3 dimensional window is requested. Option IBM3634-A is required
to convert your 2 dimensional screen to 3 dimensions for realistic viewing. A mathematically
accurate, if somewhat more achievable, rendering can be had on a color or monochrome crt
without this upgrade.

./lib/gloss.text

./lib/glosskey.text

./lib/glossdef.text

These are three files related to the glossary. The first (gloss.text) is the original glossary

0.21. THE)SET COMMAND 75

text. The second (glosskey.text) is a list of terms and pointers into glossdef.text. The third
(glossdef.text for those math majors who can’t count) is a list of definitions and pointers
back into the second (guess). These files are used by Hyperdoc.

./lib/browsedb.lisp

This is the original file that creates an in-memory hash table used by browse. It is used
during system build time. We keep it here to ensure that the bytes on this section of the
disk have a well-defined orientation, allowing us to compute the spin vectors of the individual
magnetic domains. This allows us to give Heisenburg a sense of direction (at least over the
long run).

./lib/comdb.text

./lib/libdb.text

The first file (comdb.text) contains the so-called ++ (plus plus) comments from the algebra
files. It contains pointers into the second file. The second file (libdb.text) contains flags
(constructor, operation, attribute) and pointers into the first file. These files are used by
browse in Hyperdoc.

./lib/loadmprotect

./lib/mprotect

This set of two files has been mercifully de-installed from the system. They will, if used and
despite the meaning behind the name, cause random system reboots (yeah, HARDWARE
reboots. don’t ask me how, I’m just the historian).

./lib/SPADEDIT

./lib/fc

./lib/spadbuf

./lib/SPADEDFN

./lib/obey

./lib/ex2ht

I’ve drawn a blank; intentionally.

0.20.5 The mnt/linux/lib directory

./etc

This directory intentionally left blank. We just can’t figure out WHY we intended to leave
it blank. Historical reasons, no doubt.

0.21 The)set command

The)set command contains many possible options such as:

76 CONTENTS

Current Values of)set Variables

Variable Description Current Value

--

breakmode execute break processing on error break

compiler Library compiler options ...

expose control interpreter constructor exposure ...

functions some interpreter function options ...

fortran view and set options for FORTRAN output ...

kernel library functions built into the kernel for

efficiency ...

hyperdoc options in using HyperDoc ...

help view and set some help options ...

history save workspace values in a history file on

messages show messages for various system features ...

naglink options for NAGLink ...

output view and set some output options ...

quit protected or unprotected quit unprotected

streams set some options for working with streams ...

system set some system development variables ...

userlevel operation access level of system user development

Variables with current values of ... have further

sub-options. For example,

issue)set system to see what the options are for system .

For more information, issue)help set .

The table that contains these options lives in setvart.boot.pamphlet. The actual code that
implements these options is sprinkled around but most of the first-level calls resolve to
functions in setvars.boot.pamphlet. Thus if you plan to add a new output style to the
system, or figure out where a current style is broken, these two files are the place to start.

A new)set breakmode command has been implemented to handle the case that you might
want an error message or an error return code from AXIOMsys. You can set this option
with

)set breakmode quit

This will cause AXIOMsys to exit with the return code of 1. Note that if you invoke the
“axiom” shell script to start AXIOMsys you will not see this return code (sman swallows
it).

0.22 Special Output Formats

The first level of special output formatting is handled by functions in setvart.boot.pamphlet.
This handles the options given to the)set command.

0.23 Hand creating the hyperdoc binary

First we need tanglec which is used to extract the required chunks.

We extract the source code we need from the books and compile them. Then we copy the

0.24. LOW LEVEL DEBUGGING TECHNIQUES 77

executable to the correct point in Axiom’s execution path. Now you can modify the source
code to debug.

We use the

gcc -o tanglec books/tanglec.c

tanglec books/bookvol7.pamphlet hypertex >hypertex.c

tanglec books/bookvol8.pamphlet sockio-c.c >sockio-c.c

tanglec books/bookvol8.pamphlet bsdsignal.c >bsdsignal.c

tanglec books/bookvol8.pamphlet spadcolors.c >spadcolors.c

tanglec books/bookvol8.pamphlet pixmap.c >pixmap.c

tanglec books/bookvol8.pamphlet util.c >util.c

gcc -c sockio-c.c

gcc -c bsdsignal.c

gcc -c spadcolors.c

gcc -c pixmap.c

gcc -c util.c

gcc -O2 -fno-strength-reduce -Wall -D_GNU_SOURCE -DLINUXplatform

-I/usr/X11/include -L/usr/lib/x86_64-linux-gnu/ -L/usr/X11R6/lib

-o hypertex hypertex.c spadcolors.o pixmap.o bsdsignal.o sockio-c.o

util.o -lXpm -lX11 -lm

cp hypertex mnt/ubuntu/bin

axiom

0.24 Low Level Debugging Techniques

It should be observed that Axiom is basically Common Lisp and some very low level tech-
niques can be used to find where problems occur in algebra code. This section walks thru a
small problem and illustrates some techniques that can be used to find bugs. The point of
this exercise is to show a few techniques, not to show a general method.

0.24.1 Finding Anonymous Function Signatures

This is a technique, adapted from Waldek Hebisch, for asking the interpreter to reveal the
actual function that will be called in a given circumstance. Here we have a function tanint
from the domain ElementaryIntegration.

tanint(f, x, k) ==

eta’ := differentiate(eta := first argument k, x)

r1 := tanintegrate(univariate(f, k), differentiate(#1,

differentiate(#1, x), monomial(eta’, 2) + eta’::UP),

rischDEsys(#1, 2 * eta, #2, #3, x, lflimitedint(#1, x, #2),

lfextendedint(#1, x, #2)))

map(multivariate(#1, k), r1.answer) + lfintegrate(r1.a0, x)

We would like to know the type signature of the first argument to the inner call to the
differentiate function:

differentiate(#1, x), monomial(eta’, 2) + eta’::UP),

We see that differentiate is called with #1, which is Axiom’s notation for an anonymous
function. How can we determine the signature?

78 CONTENTS

Axiom has a second notation for anonymous functions using the +-> notation. This notation
allows you to explicitly specify type information. In the above code, we would like to replace
the #1 variable with the +-> and explicit type information.

The first step is to look at the output of the Spad compiler. The abbreviation for Elemen-
taryIntegration can be found from the interpreter by:

)show ElementaryIntegration

Abbreviation for ElementaryIntegration is INTEF

So the compiler output is in the int/algebra/INTEF.nrlib/code.lsp file.

There we see the definition of the lisp tanint function. Notice that the $ is a hidden, internal
fourth argument to an Axiom three argument function. This is the vector of the current
domain containing slots where we can look up information, called the domain vector.

(DEFUN |INTEF;tanint| (|f| |x| |k| $)

(PROG (|eta| |eta’| |r1|)

(RETURN

(SEQ

(LETT |eta’|

(SPADCALL

(LETT |eta|

(|SPADfirst|

(SPADCALL |k| (QREFELT $ 18)))

|INTEF;tanint|)

|x|

(QREFELT $ 19))

|INTEF;tanint|)

(LETT |r1|

(SPADCALL

(SPADCALL |f| |k| (QREFELT $ 22))

(CONS (FUNCTION |INTEF;tanint!1|) (VECTOR |eta’| |x| $))

(CONS (FUNCTION |INTEF;tanint!4|) (VECTOR |x| $ |eta|))

(QREFELT $ 50))

|INTEF;tanint|)

(EXIT

(SPADCALL

(SPADCALL

(CONS

(FUNCTION |INTEF;tanint!5|)

(VECTOR $ |k|))

(QCAR |r1|)

(QREFELT $ 57))

(SPADCALL (QCDR |r1|) |x| (QREFELT $ 58))

(QREFELT $ 59)))))))

The assignment line for eta’ is:

eta’ := differentiate(eta := first argument k, x)

which is implemented by the code:

(LETT |eta’|

(SPADCALL

(LETT |eta|

(|SPADfirst|

(SPADCALL |k| (QREFELT $ 18)))

0.24. LOW LEVEL DEBUGGING TECHNIQUES 79

|INTEF;tanint|)

|x|

(QREFELT $ 19))

|INTEF;tanint|)

from which we see that the inner differentiate is slot 19 in the domain vector. Every domain
has an associated domain vector which contains references to other functions from other
domains, among other things. The QREFELT function takes the domain vector $ and slot
number and does a “quick array reference”. The return value is a pair, the car of which is
a function to call. The SPADCALL macro uses the last argument, in this case the result of
(QREFELT $ 19) to find the function to call.

The function from slot 19 can be found with:

)lisp (setq $dalymode t)

(setf *print-circle* t)

(setf *print-array* nil)

(setf dv (|ElementaryIntegration| (|Integer|) (|Expression| (|Integer|))))

(|replaceGoGetSlot| (cdr (aref dv 19)))

Value = (#<compiled-function |FS-;differentiate;SSS;99|> . #<vector 090cbccc>)

The call of (setq $dalymode t) changes the Axiom top level loop to interpret any input
that begins with an open parenthesis to be interpreted as a lisp s-expression rather than
Axiom input. This saves typing)lisp in front of every lisp expression. Be sure to do a
(setq $dalymode nil) when you are finished.

The *print-circle* needs to be true because the domain vector contains circular references
to itself and we need to make sure that we check for this during printing so the print is not
infinite.

The *print-array* needs to be nil so that the arrays just print some identifying information
rather than the detailed array contents.

The (setf dv ... uses the Lisp internal names for the domains. In Axiom, the names of
types are case-sensitive symbols. These are represented in lisp surrounded by vertical bars
because lisp is not case sensitive. The dv variable is essentially being set to the Axiom
equivalent of:

dv:=ElementaryIntegration(Integer,Expression(Integer))

except we do this in lisp. The end result is that dv will contain the domain vector for the
newly constructed domain. From the lisp code

Consider the call of the form:

(SPADCALL A B ’(C . D))

The SPADCALL macro takes a set of arguments, the last of which is a pair where C is the
function to call and D is the domain vector. So if we do:

(macroexpand-1 ’(spadcall a b ’(c . d)))

Value =

(LET ((#0=#:G1417 (QUOTE (C . D))))

(THE (VALUES T) (FUNCALL (CAR #0#) A B (CDR #0#))))

Note that #0 is a “pointer”, in this case to the list ’(c) and #0# is a use of that pointer. This
is done to make sure that you reference the exact cons cell of the argument.

In Axiom compiler output

(SPADCALL eta k (QREFELT $ 19))

80 CONTENTS

approximately translates to

(FUNCALL (CAR (QREFELT $ 19)) eta k (CDR (QREFELT $ 19)))

which calls the function from the domain slot 19 on the value assigned to eta and the variable
k and the domain. Thus, the full expansion becomes

(FUNCALL #<compiled-function |FS-;differentiate;SSS;99|>

eta k #<vector 090cbccc>)

From this we can see a reference to FS-;differentiate;SSS;99 which is the internal name of
the differentiate function from the FS- category.

Note that FunctionSpace is a category. When categories contain implementation code the
compiler generates 2 nrlibs. The Axiom convention for categorical implementation of code
using a trailing “-” so the actual code for FS-;differentiate;SSS;99 lives in int/algebra/FS-
.nrlib/code.lsp

We can see that the differentiate function is coming from the category

)show FS

FunctionSpace R: OrderedSet is a category constructor

Abbreviation for FunctionSpace is FS

....

differentiate : (%,Symbol) -> % if R has RING

differentiate : (%,List Symbol) -> % if R has RING

differentiate : (%,Symbol,NonNegativeInteger) -> % if R has RING

differentiate : (%,List Symbol,List NonNegativeInteger) -> % if R has RING

From the above signatures we know there is only one differentiate that is a two argument
form so the call

differentiate(#1, x), monomial(eta’, 2) + eta’::UP),

must be the first instance.

From the sources (bookvol10.4) we see that the tanint function has the signature:

tanint : (F, SE, K) -> IR

and that

SE ==> Symbol

F : Join(AlgebraicallyClosedField, TranscendentalFunctionCategory,

FunctionSpace R)

K ==> Kernel F

The differentiate function takes something of type F and a Symbol and returns something
of type F. If we write this as an anonymous function it becomes:

(x2 : F) : F +-> differentiate(x2, x)

Thus, we can rewrite the differentiate call as:

differentiate(#1, x), monomial(eta’, 2) + eta’::UP),

as

(x2 : F) : F +-> differentiate(x2, x),

monomial(eta’, 2) + eta’::UP),

Continuing in this way we can fully rewrite the assignments as:

r1 := tanintegrate(univariate(f, k),

0.24. LOW LEVEL DEBUGGING TECHNIQUES 81

(x1 : UP) : UP +-> differentiate(x1,

(x2 : F) : F +-> differentiate(x2, x),

monomial(eta’, 2) + eta’::UP),

(x6 : Integer, x2 : F, x3 : F) : Union(List F, "failed") +->

rischDEsys(x6, 2 * eta, x2, x3, x,

(x4 : F, x5 : List F) : U3 +-> lflimitedint(x4, x, x5),

(x4 : F, x5 : F) : U2 +-> lfextendedint(x4, x, x5)))

map((x1 : RF) : F +-> multivariate(x1, k), r1.answer) + _

lfintegrate(r1.a0, x)

Note that rischDEsys is tricky, because rischDEsys returns only List F, but tanintegrate
expects union.

0.24.2 The example bug

Axiom can generate TeX output by typing:

)set output tex on

Here we give an example of TeX output that contains a bug:

(1) ->)set output tex on

(1) -> radix(10**10,32)

Loading /axiom/mnt/linux/algebra/RADUTIL.o for package

RadixUtilities

Loading /axiom/mnt/linux/algebra/RADIX.o

for domain RadixExpansion

Loading /axiom/mnt/linux/algebra/ANY1.o

for package AnyFunctions1

Loading /axiom/mnt/linux/algebra/NONE1.o

for package NoneFunctions1

Loading /axiom/mnt/linux/algebra/ANY.o

for domain Any

Loading /axiom/mnt/linux/algebra/SEX.o

for domain SExpression

(1) 9A0NP00

Loading /axiom/mnt/linux/algebra/TEX.o

for domain TexFormat

Loading /axiom/mnt/linux/algebra/CCLASS.o

for domain CharacterClass

Loading /axiom/mnt/linux/algebra/IBITS.o

for domain IndexedBits

Loading /axiom/mnt/linux/algebra/UNISEG.o

for domain UniversalSegment

$$

9#\A0#\N#\P00

\leqno(1)

$$

Loading /axiom/mnt/linux/algebra/VOID.o for domain Void

Type: RadixExpansion 32

The correct output should be:

$$

82 CONTENTS

9A0NP00

\leqno(1)

$$

So we need to figure out where the # prefixes are being generated. In the above code we
can see various domains being loaded. These domains are lisp code. Each domain lives
in a subdirectory of its own. For example, the ANY domain lives in ANY.NRLIB. The
ANY.NRLIB directory contains a common lisp file named code.lsp. The compiled form of
this code ANY.o is loaded whenever the domain Any is referenced. We can look at the lisp
code:

(/VERSIONCHECK 2)

(PUT (QUOTE |ANY;obj;$N;1|)

(QUOTE |SPADreplace|)

(QUOTE QCDR))

(DEFUN |ANY;obj;$N;1| (|x| $) (QCDR |x|))

(PUT (QUOTE |ANY;dom;$Se;2|)

(QUOTE |SPADreplace|)

(QUOTE QCAR))

(DEFUN |ANY;dom;$Se;2| (|x| $) (QCAR |x|))

(PUT (QUOTE |ANY;domainOf;$Of;3|)

(QUOTE |SPADreplace|)

(QUOTE QCAR))

(DEFUN |ANY;domainOf;$Of;3| (|x| $) (QCAR |x|))

(DEFUN |ANY;=;2$B;4| (|x| |y| $)

(COND

((SPADCALL (QCAR |x|) (QCAR |y|) (QREFELT $ 17))

(EQ (QCDR |x|) (QCDR |y|)))

((QUOTE T) (QUOTE NIL))))

(DEFUN |ANY;objectOf;$Of;5| (|x| $)

(|spad2BootCoerce|

(QCDR |x|)

(QCAR |x|)

(SPADCALL

(SPADCALL "OutputForm" (QREFELT $ 21))

(QREFELT $ 23))))

(DEFUN |ANY;showTypeInOutput;BS;6| (|b| $)

(SEQ

(SETELT $ 10 (SPADCALL |b| (QREFELT $ 9)))

(EXIT

(COND

(|b| "Type of object will be displayed in

output of a member of Any")

((QUOTE T) "Type of object will not be displayed in

output of a member of Any")))))

0.24. LOW LEVEL DEBUGGING TECHNIQUES 83

(DEFUN |ANY;coerce;$Of;7| (|x| $)

(PROG (|obj1| |p| |dom1| #0=#:G1426 |a| #1=#:G1427)

(RETURN

(SEQ

(LETT |obj1|

(SPADCALL |x| (QREFELT $ 24))

|ANY;coerce;$Of;7|)

(COND

((NULL (SPADCALL (QREFELT $ 10) (QREFELT $ 26)))

(EXIT |obj1|)))

(LETT |dom1|

(SEQ

(LETT |p|

(|prefix2String| (|devaluate| (QCAR |x|)))

|ANY;coerce;$Of;7|)

(EXIT

(COND

((SPADCALL |p| (QREFELT $ 27))

(SPADCALL |p| (QREFELT $ 23)))

((QUOTE T) (SPADCALL |p| (QREFELT $ 29))))))

|ANY;coerce;$Of;7|)

(EXIT

(SPADCALL

(CONS |obj1|

(CONS ":"

(PROGN

(LETT #0# NIL |ANY;coerce;$Of;7|)

(SEQ

(LETT |a| NIL |ANY;coerce;$Of;7|)

(LETT #1# |dom1| |ANY;coerce;$Of;7|)

G190

(COND

((OR (ATOM #1#)

(PROGN

(LETT |a| (CAR #1#) |ANY;coerce;$Of;7|)

NIL))

(GO G191)))

(SEQ

(EXIT

(LETT #0#

(CONS

(SPADCALL |a| (QREFELT $ 30))

#0#)

|ANY;coerce;$Of;7|)))

(LETT #1# (CDR #1#) |ANY;coerce;$Of;7|)

(GO G190)

G191

(EXIT (NREVERSE0 #0#))))))

(QREFELT $ 31)))))))

(DEFUN |ANY;any;SeN$;8| (|domain| |object| $)

(SEQ

(COND

84 CONTENTS

((|isValidType| |domain|) (CONS |domain| |object|))

((QUOTE T)

(SEQ

(LETT |domain| (|devaluate| |domain|) |ANY;any;SeN$;8|)

(EXIT

(COND

((|isValidType| |domain|) (CONS |domain| |object|))

((QUOTE T)

(|error|

"function any must have a domain as first argument")))))))))

(DEFUN |Any| NIL

(PROG NIL

(RETURN

(PROG (#0=#:G1432)

(RETURN

(COND

((LETT #0#

(HGET |$ConstructorCache| (QUOTE |Any|))

|Any|)

(|CDRwithIncrement| (CDAR #0#)))

((QUOTE T)

(UNWIND-PROTECT

(PROG1

(CDDAR

(HPUT |$ConstructorCache|

(QUOTE |Any|)

(LIST (CONS NIL (CONS 1 (|Any;|))))))

(LETT #0# T |Any|))

(COND

((NOT #0#)

(HREM |$ConstructorCache| (QUOTE |Any|))))))))))))

(DEFUN |Any;| NIL

(PROG (|dv$| $ |pv$|)

(RETURN

(PROGN

(LETT |dv$| (QUOTE (|Any|)) . #0=(|Any|))

(LETT $ (make-array 35) . #0#)

(QSETREFV $ 0 |dv$|)

(QSETREFV $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#))

(|haddProp| |$ConstructorCache| (QUOTE |Any|) NIL (CONS 1 $))

(|stuffDomainSlots| $)

(QSETREFV $ 6

(|Record| (|:| |dm| (|SExpression|)) (|:| |ob| (|None|))))

(QSETREFV $ 10 (SPADCALL (QUOTE NIL) (QREFELT $ 9)))

$))))

(setf (get (QUOTE |Any|) (QUOTE |infovec|))

(LIST

(QUOTE

#(NIL NIL NIL NIL NIL NIL (QUOTE |Rep|)

(|Boolean|) (|Reference| 7) (0 . |ref|)

(QUOTE |printTypeInOutputP|) (|None|)

0.24. LOW LEVEL DEBUGGING TECHNIQUES 85

|ANY;obj;$N;1| (|SExpression|) |ANY;dom;$Se;2|

(|OutputForm|) |ANY;domainOf;$Of;3| (5 . =)

|ANY;=;2$B;4| (|String|) (|Symbol|) (11 . |coerce|)

(|List| 20) (16 . |list|) |ANY;objectOf;$Of;5|

|ANY;showTypeInOutput;BS;6| (21 . |deref|)

(26 . |atom?|) (|List| $) (31 . |list|)

(36 . |coerce|) (41 . |hconcat|) |ANY;coerce;$Of;7|

|ANY;any;SeN$;8| (|SingleInteger|)))

(QUOTE #(~= 46 |showTypeInOutput| 52 |objectOf| 57 |obj|

62 |latex| 67 |hash| 72 |domainOf| 77 |dom| 82

|coerce| 87 |any| 92 = 98))

(QUOTE NIL)

(CONS (|makeByteWordVec2| 1 (QUOTE (0 0 0)))

(CONS (QUOTE #(|SetCategory&| |BasicType&| NIL))

(CONS

(QUOTE #((|SetCategory|) (|BasicType|) (|CoercibleTo| 15)))

(|makeByteWordVec2| 34

(QUOTE (1 8 0 7 9 2 13 7 0 0 17 1 20 0 19 21 1 22 0 20

23 1 8 7 0 26 1 13 7 0 27 1 20 28 0 29 1 20 15

0 30 1 15 0 28 31 2 0 7 0 0 1 1 0 19 7 25 1 0

15 0 24 1 0 11 0 12 1 0 19 0 1 1 0 34 0 1 1 0

15 0 16 1 0 13 0 14 1 0 15 0 32 2 0 0 13 11 33

2 0 7 0 0 18))))))

(QUOTE |lookupComplete|)))

(setf (get (QUOTE |Any|) (QUOTE NILADIC)) T)

We can ignore this information and focus on the functions that are defined in this file. These
functions can be traced with the usual common lisp tracing facility. So lets create a file
/tmp/debug.lisp that contains a trace statement for each DEFUN in ANY.NRLIB/code.lsp.
It looks like:

(trace |ANY1;retractable?;AB;1|)

(trace |ANY1;coerce;SA;2|)

(trace |ANY1;retractIfCan;AU;3|)

(trace |ANY1;retract;AS;4|)

(trace |AnyFunctions1|)

(trace |AnyFunctions1;|)

We can now restart the axiom system, rerun the failing expression (this will autoload
ANY.o; alternatively we could hand-load the ANY.NRLIB/code.lsp file), and then load
our /tmp/debug.lisp file. Now all of the functions in the ANY domain are traced and we
can watch the trace occur while the expression is evaluated. In this example I’ve created a
larger file that traces all of the loaded domains:

(trace |RADUTIL;radix;FIA;1|)

(trace |RadixUtilities|)

(trace |RadixUtilities;|)

(trace |RADIX;characteristic;Nni;1|)

(trace |RADIX;differentiate;2$;2|)

(trace |RADIX;Zero;$;3|)

(trace |RADIX;One;$;4|)

(trace |RADIX;-;2$;5|)

(trace |RADIX;+;3$;6|)

(trace |RADIX;-;3$;7|)

86 CONTENTS

(trace |RADIX;*;I2$;8|)

(trace |RADIX;*;3$;9|)

(trace |RADIX;/;3$;10|)

(trace |RADIX;/;2I$;11|)

(trace |RADIX;<;2$B;12|)

(trace |RADIX;=;2$B;13|)

(trace |RADIX;numer;$I;14|)

(trace |RADIX;denom;$I;15|)

(trace |RADIX;coerce;$F;16|)

(trace |RADIX;coerce;I$;17|)

(trace |RADIX;coerce;F$;18|)

(trace |RADIX;retractIfCan;$U;19|)

(trace |RADIX;retractIfCan;$U;20|)

(trace |RADIX;ceiling;$I;21|)

(trace |RADIX;floor;$I;22|)

(trace |RADIX;wholePart;$I;23|)

(trace |RADIX;fractionPart;$F;24|)

(trace |RADIX;wholeRagits;$L;25|)

(trace |RADIX;fractRagits;$S;26|)

(trace |RADIX;prefixRagits;$L;27|)

(trace |RADIX;cycleRagits;$L;28|)

(trace |RADIX;wholeRadix;L$;29|)

(trace |RADIX;fractRadix;2L$;30|)

(trace |RADIX;intToExpr|)

(trace |RADIX;exprgroup|)

(trace |RADIX;intgroup|)

(trace |RADIX;overBar|)

(trace |RADIX;coerce;$Of;35|)

(trace |RADIX;checkRagits|)

(trace |RADIX;radixInt|)

(trace |RADIX;radixFrac|)

(trace |RadixExpansion|)

(trace |RadixExpansion;|)

(trace |ANY1;retractable?;AB;1|)

(trace |ANY1;coerce;SA;2|)

(trace |ANY1;retractIfCan;AU;3|)

(trace |ANY1;retract;AS;4|)

(trace |AnyFunctions1|)

(trace |AnyFunctions1;|)

(trace |NONE1;coerce;SN;1|)

(trace |NoneFunctions1|)

(trace |NoneFunctions1;|)

(trace |ANY;obj;$N;1|)

(trace |ANY;dom;$Se;2|)

(trace |ANY;domainOf;$Of;3|)

(trace |ANY;=;2$B;4|)

(trace |ANY;objectOf;$Of;5|)

(trace |ANY;showTypeInOutput;BS;6|)

(trace |ANY;coerce;$Of;7|)

(trace |ANY;any;SeN$;8|)

(trace |Any|)

0.24. LOW LEVEL DEBUGGING TECHNIQUES 87

(trace |Any;|)

(trace |SExpression|)

(trace |SExpression;|)

(trace |TEX;new;$;1|)

(trace |TEX;newWithNum|)

(trace |TEX;coerce;Of$;3|)

(trace |TEX;convert;OfI$;4|)

(trace |TEX;display;$IV;5|)

(trace |TEX;display;$V;6|)

(trace |TEX;prologue;$L;7|)

(trace |TEX;tex;$L;8|)

(trace |TEX;epilogue;$L;9|)

(trace |TEX;setPrologue!;$2L;10|)

(trace |TEX;setTex!;$2L;11|)

(trace |TEX;setEpilogue!;$2L;12|)

(trace |TEX;coerce;$Of;13|)

(trace |TEX;ungroup|)

(trace |TEX;postcondition|)

(trace |TEX;stringify|)

(trace |TEX;lineConcat|)

(trace |TEX;splitLong|)

(trace |TEX;splitLong1|)

(trace |TEX;group|)

(trace |TEX;addBraces|)

(trace |TEX;addBrackets|)

(trace |TEX;parenthesize|)

(trace |TEX;precondition|)

(trace |TEX;formatSpecial|)

(trace |TEX;formatPlex|)

(trace |TEX;formatMatrix|)

(trace |TEX;formatFunction|)

(trace |TEX;formatNullary|)

(trace |TEX;formatUnary|)

(trace |TEX;formatBinary|)

(trace |TEX;formatNary|)

(trace |TEX;formatNaryNoGroup|)

(trace |TEX;formatTex|)

(trace |TexFormat|)

(trace |TexFormat;|)

(trace |CCLASS;digit;$;1|)

(trace |CCLASS;hexDigit;$;2|)

(trace |CCLASS;upperCase;$;3|)

(trace |CCLASS;lowerCase;$;4|)

(trace |CCLASS;alphabetic;$;5|)

(trace |CCLASS;alphanumeric;$;6|)

(trace |CCLASS;=;2$B;7|)

(trace |CCLASS;member?;C$B;8|)

(trace |CCLASS;union;3$;9|)

(trace |CCLASS;intersect;3$;10|)

(trace |CCLASS;difference;3$;11|)

(trace |CCLASS;complement;2$;12|)

88 CONTENTS

(trace |CCLASS;convert;$S;13|)

(trace |CCLASS;convert;$L;14|)

(trace |CCLASS;charClass;S$;15|)

(trace |CCLASS;charClass;L$;16|)

(trace |CCLASS;coerce;$Of;17|)

(trace |CCLASS;#;$Nni;18|)

(trace |CCLASS;empty;$;19|)

(trace |CCLASS;brace;$;20|)

(trace |CCLASS;insert!;C2$;21|)

(trace |CCLASS;remove!;C2$;22|)

(trace |CCLASS;inspect;$C;23|)

(trace |CCLASS;extract!;$C;24|)

(trace |CCLASS;map;M2$;25|)

(trace |CCLASS;map!;M2$;26|)

(trace |CCLASS;parts;$L;27|)

(trace |CharacterClass|)

(trace |CharacterClass;|)

(trace |IBITS;minIndex;$I;1|)

(trace |IBITS;range|)

(trace |IBITS;coerce;$Of;3|)

(trace |IBITS;new;NniB$;4|)

(trace |IBITS;empty;$;5|)

(trace |IBITS;copy;2$;6|)

(trace |IBITS;#;$Nni;7|)

(trace |IBITS;=;2$B;8|)

(trace |IBITS;<;2$B;9|)

(trace |IBITS;and;3$;10|)

(trace |IBITS;or;3$;11|)

(trace |IBITS;xor;3$;12|)

(trace |IBITS;setelt;$I2B;13|)

(trace |IBITS;elt;$IB;14|)

(trace |IBITS;Not;2$;15|)

(trace |IBITS;And;3$;16|)

(trace |IBITS;Or;3$;17|)

(trace |IndexedBits|)

(trace |IndexedBits;|)

(trace |UNISEG;segment;S$;1|)

(trace |UNISEG;segment;2S$;2|)

(trace |UNISEG;BY;I;3|)

(trace |UNISEG;lo;$S;4|)

(trace |UNISEG;low;$S;5|)

(trace |UNISEG;hasHi;$B;6|)

(trace |UNISEG;hi;$S;7|)

(trace |UNISEG;high;$S;8|)

(trace |UNISEG;incr;$I;9|)

(trace |UNISEG;SEGMENT;S$;10|)

(trace |UNISEG;SEGMENT;2S$;11|)

(trace |UNISEG;coerce;S$;12|)

(trace |UNISEG;convert;S$;13|)

(trace |UNISEG;=;2$B;14|)

(trace |UNISEG;coerce;$Of;15|)

(trace |UNISEG;expand;$S;16|)

0.24. LOW LEVEL DEBUGGING TECHNIQUES 89

(trace |UNISEG;map;M$S;17|)

(trace |UNISEG;plusInc|)

(trace |UNISEG;expand;LS;19|)

(trace |UNISEG;expand;LS;19!0|)

(trace |UniversalSegment|)

(trace |UniversalSegment;|)

Now we rerun the function and get the trace output

(2) ->)lisp (load "/axiom/debug.lisp")

Value = T

(2) -> radix(10**10,32)

1> (|RadixUtilities|)

<1 (|RadixUtilities| #<vector 08b565cc>)

1> (|RadixExpansion| 32)

<1 (|RadixExpansion| #<vector 08b8cc94>)

1> (|AnyFunctions1| #<vector 08b8cc94>)

<1 (|AnyFunctions1| #<vector 08b5647c>)

1> (|RadixExpansion| 32)

<1 (|RadixExpansion| #<vector 08b8cc94>)

1> (|RADIX;radixInt| 10000000000 32 #<vector 08b8cc94>)

<1 (|RADIX;radixInt| (9 10 0 23 25 0 0))

1> (|RADIX;radixFrac| 0 1 32 #<vector 08b8cc94>)

<1 (|RADIX;radixFrac| (NIL 0))

1> (|RadixExpansion| 32)

<1 (|RadixExpansion| #<vector 08b8cc94>)

1> (|RADIX;intgroup| (9 10 0 23 25 0 0) #<vector 08b8cc94>)

2> (|RADIX;intToExpr| 9 #<vector 08b8cc94>)

<2 (|RADIX;intToExpr| 9)

2> (|RADIX;intToExpr| 10 #<vector 08b8cc94>)

<2 (|RADIX;intToExpr| #\A)

2> (|RADIX;intToExpr| 0 #<vector 08b8cc94>)

<2 (|RADIX;intToExpr| 0)

2> (|RADIX;intToExpr| 23 #<vector 08b8cc94>)

<2 (|RADIX;intToExpr| #\N)

2> (|RADIX;intToExpr| 25 #<vector 08b8cc94>)

<2 (|RADIX;intToExpr| #\P)

2> (|RADIX;intToExpr| 0 #<vector 08b8cc94>)

<2 (|RADIX;intToExpr| 0)

2> (|RADIX;intToExpr| 0 #<vector 08b8cc94>)

<2 (|RADIX;intToExpr| 0)

<1 (|RADIX;intgroup| (CONCAT 9 #\A 0 #\N #\P 0 0))

1> (|RADIX;exprgroup|

((CONCAT 9 #\A 0 #\N #\P 0 0)) #<vector 08b8cc94>)

<1 (|RADIX;exprgroup| (CONCAT 9 #\A 0 #\N #\P 0 0))

(2) 9A0NP00

1> (|TexFormat|)

<1 (|TexFormat| #<vector 08b24000>)

1> (|TexFormat|)

<1 (|TexFormat| #<vector 08b24000>)

1> (|TEX;newWithNum| 2 #<vector 08b24000>)

90 CONTENTS

<1 (|TEX;newWithNum| #<vector 08b8c284>)

1> (|TEX;precondition|

(CONCAT 9 #\A 0 #\N #\P 0 0) #<vector 08b24000>)

<1 (|TEX;precondition| (CONCAT 9 #\A 0 #\N #\P 0 0))

1> (|TEX;formatTex|

(CONCAT 9 #\A 0 #\N #\P 0 0) 0 #<vector 08b24000>)

2> (|TEX;stringify| CONCAT #<vector 08b24000>)

<2 (|TEX;stringify| "CONCAT")

2> (|TEX;formatSpecial| "CONCAT"

(9 #\A 0 #\N #\P 0 0) 0 #<vector 08b24000>)

3> (|TEX;formatNary| ""

(9 #\A 0 #\N #\P 0 0) 0 #<vector 08b24000>)

4> (|TEX;formatNaryNoGroup| ""

(9 #\A 0 #\N #\P 0 0) 0 #<vector 08b24000>)

5> (|TEX;formatTex| 9 0 #<vector 08b24000>)

6> (|TEX;stringify| 9 #<vector 08b24000>)

<6 (|TEX;stringify| "9")

<5 (|TEX;formatTex| "9")

5> (|TEX;formatTex| #\A 0 #<vector 08b24000>)

6> (|TEX;stringify| #\A #<vector 08b24000>)

<6 (|TEX;stringify| "#\\A")

6> (|IBITS;range|

#<bit-vector 0831d930> 35 #<vector 085da658>)

<6 (|IBITS;range| 35)

<5 (|TEX;formatTex| "#\\A")

5> (|TEX;formatTex| 0 0 #<vector 08b24000>)

6> (|TEX;stringify| 0 #<vector 08b24000>)

<6 (|TEX;stringify| "0")

<5 (|TEX;formatTex| "0")

5> (|TEX;formatTex| #\N 0 #<vector 08b24000>)

6> (|TEX;stringify| #\N #<vector 08b24000>)

<6 (|TEX;stringify| "#\\N")

6> (|IBITS;range|

#<bit-vector 0831d930> 35 #<vector 085da658>)

<6 (|IBITS;range| 35)

<5 (|TEX;formatTex| "#\\N")

5> (|TEX;formatTex| #\P 0 #<vector 08b24000>)

6> (|TEX;stringify| #\P #<vector 08b24000>)

<6 (|TEX;stringify| "#\\P")

6> (|IBITS;range|

#<bit-vector 0831d930> 35 #<vector 085da658>)

<6 (|IBITS;range| 35)

<5 (|TEX;formatTex| "#\\P")

5> (|TEX;formatTex| 0 0 #<vector 08b24000>)

6> (|TEX;stringify| 0 #<vector 08b24000>)

<6 (|TEX;stringify| "0")

<5 (|TEX;formatTex| "0")

5> (|TEX;formatTex| 0 0 #<vector 08b24000>)

6> (|TEX;stringify| 0 #<vector 08b24000>)

<6 (|TEX;stringify| "0")

<5 (|TEX;formatTex| "0")

<4 (|TEX;formatNaryNoGroup| "9#\\A0#\\N#\\P00")

4> (|TEX;group| "9#\\A0#\\N#\\P00" #<vector 08b24000>)

<4 (|TEX;group| "{9#\\A0#\\N#\\P00}")

0.24. LOW LEVEL DEBUGGING TECHNIQUES 91

<3 (|TEX;formatNary| "{9#\\A0#\\N#\\P00}")

<2 (|TEX;formatSpecial| "{9#\\A0#\\N#\\P00}")

<1 (|TEX;formatTex| "{9#\\A0#\\N#\\P00}")

1> (|TEX;postcondition|

"{9#\\A0#\\N#\\P00}" #<vector 08b24000>)

2> (|TEX;ungroup| "{9#\\A0#\\N#\\P00}" #<vector 08b24000>)

<2 (|TEX;ungroup| "9#\\A0#\\N#\\P00")

<1 (|TEX;postcondition| "9#\\A0#\\N#\\P00")

$$

1> (|TEX;splitLong|

"9#\\A0#\\N#\\P00" 77 #<vector 08b24000>)

2> (|TEX;splitLong1|

"9#\\A0#\\N#\\P00" 77 #<vector 08b24000>)

3> (|TEX;lineConcat|

"9#\\A0#\\N#\\P00 " NIL #<vector 08b24000>)

<3 (|TEX;lineConcat| ("9#\\A0#\\N#\\P00 "))

<2 (|TEX;splitLong1| ("9#\\A0#\\N#\\P00 "))

<1 (|TEX;splitLong| ("9#\\A0#\\N#\\P00 "))

9#\A0#\N#\P00

\leqno(2)

$$

Type: RadixExpansion 32

Notice the call that reads:

2> (|RADIX;intToExpr| 10 #<vector 08b8cc94>)

<2 (|RADIX;intToExpr| #\A)

This means that calling —RADIX;intToExpr— with the number 10 and “the domain vector”
generates the character #
A which fails. If we had the domain vector in a variable we could hand-execute this algebra
function directly and watch it fail. So we go to the file RADIX.NRLIB/code.lsp which
contains the definition of RADIX;intToExpr. The definition is:

(DEFUN |RADIX;intToExpr| (|i| $)

(COND

((< |i| 10)

(SPADCALL |i| (QREFELT $ 66)))

((QUOTE T)

(SPADCALL

(SPADCALL

(QREFELT $ 64)

(+ (- |i| 10) (SPADCALL (QREFELT $ 64) (QREFELT $ 68)))

(QREFELT $ 70))

(QREFELT $ 71)))))

We can put this definition into our /tmp/debug.lisp file and modify it to capture the domain
vector passed in the $ variable thus:

(DEFUN |RADIX;intToExpr| (|i| $)

(setq tpd $)

(COND

((< |i| 10)

(SPADCALL |i| (QREFELT $ 66)))

((QUOTE T)

(SPADCALL

92 CONTENTS

(SPADCALL

(QREFELT $ 64)

(+ (- |i| 10) (SPADCALL (QREFELT $ 64) (QREFELT $ 68)))

(QREFELT $ 70))

(QREFELT $ 71)))))

Now when this function is executed the tpd variable will contain the value of $, the domain
vector. So we load debug.lisp again to redefine RADIX;intToExpr and re-execute the func-
tion. The trace results will be the same but now the global variable tpd will have the domain
vector:

(4) -> (identity tpd)

Value = #<vector 08b8cc94>

Now we can use common lisp to step the RADIX;intToExpr function:

(4) -> (step (|RADIX;intToExpr| 10 tpd))

Type ? and a newline for help.

(|RADIX;intToExpr| 10 ...) ?

Stepper commands:

n (or N or Newline): advances to the next form.

s (or S): skips the form.

p (or P): pretty-prints the form.

f (or F) FUNCTION: skips until the FUNCTION is called.

q (or Q): quits.

u (or U): goes up to the enclosing form.

e (or E) FORM: evaluates the FORM and prints the value(s).

r (or R) FORM: evaluates the FORM and returns the value(s).

b (or B): prints backtrace.

?: prints this.

(|RADIX;intToExpr| 10 ...)

10

TPD

= #<vector 08b8cc94>

(SYSTEM::TRACE-CALL (QUOTE #:G1624) ...)

(QUOTE #:G1624)

SYSTEM::ARGS

= (10 #<vector 08b8cc94>)

(QUOTE T)

(QUOTE T)

(QUOTE (CONS # ...))

(QUOTE T)

(QUOTE (CONS # ...))

(LET (#) ...)

(QUOTE (10 #<vector 08b8cc94>))

T

= T

1> (LET (#) ...)

(QUOTE (10 #<vector 08b8cc94>))

(CONS (QUOTE |RADIX;intToExpr|) ...)

(QUOTE |RADIX;intToExpr|)

SYSTEM::ARGLIST

0.24. LOW LEVEL DEBUGGING TECHNIQUES 93

= (10 #<vector 08b8cc94>)

= (|RADIX;intToExpr| 10 ...)

= (|RADIX;intToExpr| 10 ...)

(|RADIX;intToExpr| 10 ...)

(SETQ TPD ...)

$

= #<vector 08b8cc94>

= #<vector 08b8cc94>

(COND (# #) ...)

(< |i| ...)

|i|

= 10

10

= NIL

(QUOTE T)

(SPADCALL (SPADCALL # ...) ...)

(LET (#) ...)

(QREFELT $...)

(SVREF $...)

$

= #<vector 08b8cc94>

71

= (#<compiled-function |CHAR;coerce;$Of;12|> .

#<vector 08b3901c>)

= (#<compiled-function |CHAR;coerce;$Of;12|> .

#<vector 08b3901c>)

(THE (VALUES T) ...)

(FUNCALL (CAR #:G1776) ...)

(CAR #:G1776)

#:G1776

= (#<compiled-function |CHAR;coerce;$Of;12|> .

#<vector 08b3901c>)

= #<compiled-function |CHAR;coerce;$Of;12|>

(SPADCALL (QREFELT $...) ...)

(LET (#) ...)

(QREFELT $...)

(SVREF $...)

$

= #<vector 08b8cc94>

70

= (#<compiled-function

|ISTRING;elt;$IC;30|> .

#<vector 08b26850>)

= (#<compiled-function

|ISTRING;elt;$IC;30|> .

#<vector 08b26850>)

(THE (VALUES T) ...)

(FUNCALL (CAR #:G1777) ...)

(CAR #:G1777)

#:G1777

= (#<compiled-function

|ISTRING;elt;$IC;30|> .

#<vector 08b26850>)

= #<compiled-function |ISTRING;elt;$IC;30|>

94 CONTENTS

(QREFELT $...)

(SVREF $...)

$

= #<vector 08b8cc94>

64

= "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

= "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

(+ (- |i| ...) ...)

(- |i| ...)

|i|

= 10

10

= 0

(SPADCALL (QREFELT $...) ...)

(LET (#) ...)

(QREFELT $...)

(SVREF $...)

$

= #<vector 08b8cc94>

68

= (#<compiled-function

|ISTRING;minIndex;$I;11|> .

#<vector 08b26850>)

= (#<compiled-function

|ISTRING;minIndex;$I;11|> .

#<vector 08b26850>)

(THE (VALUES T) ...)

(FUNCALL (CAR #:G1778) ...)

(CAR #:G1778)

#:G1778

= (#<compiled-function

|ISTRING;minIndex;$I;11|> .

#<vector 08b26850>)

= #<compiled-function

|ISTRING;minIndex;$I;11|>

(QREFELT $...)

(SVREF $...)

$

= #<vector 08b8cc94>

64

= "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

= "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

(CDR #:G1778)

#:G1778

= (#<compiled-function

|ISTRING;minIndex;$I;11|> .

#<vector 08b26850>)

= #<vector 08b26850>

= 1

= 1

= 1

= 1

= 1

(CDR #:G1777)

0.24. LOW LEVEL DEBUGGING TECHNIQUES 95

#:G1777

= (#<compiled-function

|ISTRING;elt;$IC;30|> .

#<vector 08b26850>)

= #<vector 08b26850>

= 65

= 65

= 65

= 65

(CDR #:G1776)

#:G1776

= (#<compiled-function

|CHAR;coerce;$Of;12|> .

#<vector 08b3901c>)

= #<vector 08b3901c>

= #\A

= #\A

= #\A

= #\A

= #\A

<1 (LET (# #) ...)

(QUOTE (10 #<vector 08b8cc94>))

(QUOTE (#\A))

(CONS (QUOTE |RADIX;intToExpr|) ...)

(QUOTE |RADIX;intToExpr|)

VALUES

= (#\A)

= (|RADIX;intToExpr| #\A)

= (|RADIX;intToExpr| #\A)

(|RADIX;intToExpr| #\A)

= #\A

= #\A

Value = #\A

(4) ->

If we examine the source code for this function in int/algebra/radix.spad we find:

ALPHAS : String := "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

intToExpr(i:I): OUT ==

-- computes a digit for bases between 11 and 36

i < 10 => i :: OUT

elt(ALPHAS,(i-10) + minIndex(ALPHAS)) :: OUT

We do some lookups by hand to find out what functions are being called from the domain
vectors thus:

(4) ->)lisp (qrefelt tpd 68)

Value = (#<compiled-function

|ISTRING;minIndex;$I;11|> . #<vector 08b26850>)

96 CONTENTS

The #
A value appears from a call to CHAR;coerce;$Of;12. We can look in CHAR.NRLIB/code.lsp
for this function and continue our descent into the code. The function looks like:

(DEFUN |CHAR;coerce;$Of;12| (|c| $)

(ELT (QREFELT $ 10)

(+ (QREFELT $ 11) (SPADCALL |c| (QREFELT $ 21)))))

Again we need to get the domain vector, this time from the CHAR domain. The domain
vector has all of the information about a domain including what functions are referenced
and what data values are used. The QREFELT is a “quick elt” function which resolved to a
highly type optimized function call. The SPADCALL function funcalls the second argument
to SPADCALL with the first argument to SPADCALL effectively giving:

(funcall (qrefelt $ 21) |c|)

So we modify the CHAR;coerce;$Of;12 function to capture the domain vector thus:

(DEFUN |CHAR;coerce;$Of;12| (|c| $)

(format t "|CHAR;coerce;$Of;12| called")

(setq tpd1 $)

(ELT (QREFELT $ 10)

(+ (QREFELT $ 11) (SPADCALL |c| (QREFELT $ 21)))))

Again we rerun the failing function and now tpd1 contains the domain vector for the domain
CHAR:

0.24.3 Operating system level I/O trace (strace)

If the bug seems to happen during startup the only method of debugging might be to use
strace. To do this, replace the $AXIOM/bin/AXIOMsys binary with a shell script. You
should:

1. rename $AXIOM/bin/AXIOMsys to $AXIOM/bin/AXIOMsys.bin

2. create the shell script shown below

3. copy the shell script to the file $AXIOM/bin/AXIOMsys so it will execute in place of
the normal Axiom image

4. chmod +x $AXIOM/bin/AXIOMsys to make the script executable

5. start axiom normally

The script reads:

#!/bin/sh

exec strace -o /tmp/str.$$ /research/test/mnt/ubuntu/bin/AXIOMsys.bin "$@"

| tee /tmp/tee.$$

The script will create 2 files in the tmp directory, “str.NNNNN” and “tee.NNNNN” where
NNNNN is the process id assigned to axiom at runtime.

The tee.NNNNN file contains the console output you saw. The str.NNNNN contains the
output of strace which is a list of all of the system calls and their result.

0.25. HOW TO MAKE GRAPHS IN ALGEBRA BOOKS 97

0.25 How to make graphs in algebra books

dot -Tps ¡pic ¿books/ps/domain.ps

where file pic contains something like:

digraph pic {

fontsize=10;

bgcolor="#ECEA81";

node [shape=box, color=white, style=filled];

"OrderlyDifferentialVariable"

[color=lightblue,href="bookvol10.3.pdf#nameddest=ODVAR"];

}

In book Volume 10.3 there are .ps files generated for each domain.

These pictures show the category, domain, or package that is the highest in the algebra
tower. That means that the parent domain has to be compiled before this domain. Since
the parent is the highest in the tower then all of the other domains will already have been
compiled.

We derive the dependency information from the algebra Makefile. In order to insert algebra
into the tower we derive its parents and then create a table of all of the parents. However, the
table is mostly comments except for the highest parent. So if the highest parent is compiled
in layer 12 then the new domain is inserted into layer 13.

The graph information at the end of a domain (e.g. UTSZ) contains only the uncommented
information. It is used to generate the picture. So for UTSZ we see:

"UTSZ" [color="#88FF44",href="bookvol10.3.pdf#nameddest=UTSZ"]

"ACFS" [color="#4488FF",href="bookvol10.2.pdf#nameddest=ACFS"]

"UTSZ" -> "ACFS"

This tells us several pieces of information. UTSZ depends on ACFS as the highest parent.
ACFS is in layer 17 so is in layer 18. ACFS is a category (color 4488FF) and lives in
bookvol10.2. UTSZ is a domain (color 88FF44, note the rotation of hex codes, a package is
color FF4488) and lives in bookvol10.3.

The necessary stanzas exist after each algebra domain. Copy the stanza into a digraph block
and run the dot function. So for the UTSZ domain we would create a file (e.g. called ’pic’)
that contains a block that reads:

digraph pic {

fontsize=10;

bgcolor="#ECEA81";

node [shape=box, color=white, style=filled];

"UTSZ" [color="#88FF44",href="bookvol10.3.pdf#nameddest=UTSZ"]

"ACFS" [color="#4488FF",href="bookvol10.2.pdf#nameddest=ACFS"]

"UTSZ" -> "ACFS"

}

and then run the command:

dot -Tps <pic >pic.ps

cp pic.ps ps/v103univariatetaylorseriesczero.ps

98 CONTENTS

The output file “ps/v103univariatetaylorseriesczero.ps” is included after the pagepic of each
domain in the book.

0.26 Adding or Editing pages in Hyperdoc

In Axiom it is easy to develop new pages in hyperdoc. All of the hyperdoc pages live in
bookvol7.1.pamphlet.

The structure of each page, say for the Fantastic domain, consists of a few lines of latex
followed by a literate chunk. All of the hyperdoc page information goes into the literate
chunk and will be extracted as a hyperdoc page.

\section{fantastic.ht} <-- ordinary latex

\pagehead{FantasticPage}{fantastic.ht}{Fantastic} <-- special latex

\pageto{..... <-- for latex (not hyperdoc) links to other pages

<<fantastic.ht>>= <-- this is what htadd looks for

all the documentation for domain Fantastic

@ <-- this is the end of the page for htadd

When you add new pages to bookvol7.1.pamphlet you need to tell the system about the
changes. The “htadd” function will search the bookvol7.1.pamphlet file for chunks with the
name “*.ht” and build the file ht.db.

The ht.db file is used by hyperdoc to find pages. Each line in ht.db contains a line that

FantasticPage (byteIndex) (lineIndex)

So the two critical files, bookvol7.1.pamphlet and ht.db live in $AXIOM/doc

There is a very fast cycle for editing.

cd $AXIOM/doc

while (1) do

axiom <-- at the shell prompt

(navigate to page in hyperdoc) <-- to check your work

)lisp (bye) <-- at the axiom prompt

(modify bookvol7.1.pamphlet) <-- change the page

rm ht.db <-- remove the old database

htadd bookvol7.1.pamphlet <-- remake the database

0.27 Graphviz file creation

The graphviz output used on the website is a scaled vector graphics file (SVG). The dot
command to output this file is:

dot -Tsvg:cg <pic >pic.svg

The SVG file that gets generated has the following preamble.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd" [

0.27. GRAPHVIZ FILE CREATION 99

<!ATTLIST svg xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink">

]>

<!-- Generated by dot version 2.8 (Thu Sep 14 20:34:11 UTC 2006)

For user: (root) root -->

<!-- Title: AxiomSept2008 Pages: 1 -->

<svg width="3960pt" height="2312pt"

viewBox = "0 0 3960 2312"

xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink">

There are two pieces of information that are important. First, we need to add the following
text by removing the trailing > character from the svg tag and replacing it with the following
block. This block exports some javascript functions that we use to scale the graphics.

onload="RunScript(evt)">

<script type="text/ecmascript">

<![CDATA[

var g_element;

var SVGDoc;

var SVGRoot;

function setDimension(w,h) {

SVGDoc.documentElement.setAttribute("width",w);

SVGDoc.documentElement.setAttribute("height",h);

}

function setScale(sw,sh) {

g_element.setAttribute("transform","scale("+sw+" "+sh+")");

}

function RunScript(LoadEvent) {

top.SVGsetDimension=setDimension;

top.SVGsetScale=setScale;

SVGDoc=LoadEvent.target.ownerDocument;

g_element=SVGDoc.getElementById("graph0");

}

]]>

</script>

A second item of interest is the viewbox line which gives us the width and height information.
We use this information to place the graph on the web page. A simple example of the web
page looks follows. We need to replace the X and Y sizes with the sizes from the viewbox
above.

<html>

<head>

<title>Axiom Abbreviated Category and Domain graph</title>

<script type="text/javascript">

var W3CDOM = (document.createElement && document.getElementsByTagName);

window.onload = init;

function init(evt) {

SVGscale(0.5);

}

function SVGscale(scale) {

window.SVGsetDimension(8162*scale, 3068*scale);

window.SVGsetScale(scale,scale);

var box = document.getElementById(’svgid’);

box.width = 8162*scale;

box.height = 3068*scale;

100 CONTENTS

}

</script>

</head>

<body>

<h1>Axiom Abbreviated Category and Domain graph</h1>

<div>

choose here:

0.1 or

0.25 or

0.5 or

1.0 or

1.5 or ...

</div>

<div>

<object id=’svgid’ data="dotabb.svg" type="image/svg+xml"

width="8162" height="3068" wmode="transparent" style="overflow:hidden;" />

</object>

</div>

</body>

</html>

0.28 Adding Algebra

0.28.1 Adding algebra to the books

Assume you have a piece of algebra code that you want to permanently add to Axiom. This
is a fairly complex process since the system automatically runs regression tests, creates help
files, etc. and has other standard features you need to support. Lets assume your algebra
looks like this:

)abbreviation package INTERGB InterfaceGroebnerPackage

InterfaceGroebnerPackage(K,symb,E,OV,R):Exports == Implementation where

K : FIELD

symb : List Symbol

E : OrderedAbelianMonoidSup

OV : OrderedSet

R : PolynomialCategory(K,E,OV)

LIST ==> List

Exports ==> with

groebner: LIST R -> LIST R

Implementation ==> add

PF ==> PrimeField(q)

DPF ==> DistributedMultivariatePolynomial(symb,PF)

D ==> DistributedMultivariatePolynomial(symb,K)

JCFGBPack ==> GroebnerPackage(PF,E,OV,DPF)

GBPack ==> GroebnerPackage(K,E,OV,D)

0.28. ADDING ALGEBRA 101

coerceDtoR: D->R

coerceDtoR(pol) == map(#1,pol)$MPolyCatFunctions2(OV,E,E,K,K,D,R)

groebner(l)==

ldmp:List D:= [coerceRtoD(pol) for pol in l]

gg:=groebner(ldmp)$GBPack

[coerceDtoR(pol) for pol in gg]

There are some things to check and things to change.

• remove all tabs. Spad is a language that assigns meaning to indentation and tabs are
not going to survive the build process intact.

• try to stay within 80 characters. Spad code is printed in the books so it should try to
limit line lengths everywhere.

• change “)abbreviation” to “)abbrev”. The Makefile will search for the abbrev line and
expect this exact text.

)abbrev package INTERGB InterfaceGroebnerPackage

• make sure there is only a single space between the items in the abbrev line. The
Makefile assumes this.

• Add the comment header block. The author information is used to check that all
authors are included in the credits. The description tag is used as output by the
“)describe” command. For example:

++ Author: Gaetan Hache

++ Date Created: September 1996

++ Date Last Updated: April, 2010, by Tim Daly

++ Description:

++ Part of the Package for Algebraic Function Fields in one variable PAFF

Other tags can be included but are not used. Do not assume that any format informa-
tion will be correctly translated or preserved. Make the description section be simple
text with a single character between the “++” and the first word of the text.

1. Choose the right book:

• Category goes into book bookvol10.2.pamphlet

• Domain goes into book bookvol10.3.pamphlet

• Package goes into book bookvol10.4.pamphlet

• Numerics goes into book bookvol10.5.pamphlet

2. Find the right chapter. Chapter ordered by name, not abbreviation

3. Create a new section. The easiest way to do this is to copy another section and change
the names. In any case, your new section will need

4. Create a dividiing line consisting of all % signs. Note that this character is the comment
character for TeX.

5. Create the \section tag. This tag should contain the exact text of the)abbrev line from
your algebra code. It reads:)section{package INTERGB InterfaceGroebnerPackage}

6. Create a regression test chunk. This chunk derives its name from the algebra name as
in “InterfaceGroebnerPackage.input”. This chunk will be automatically extracted and
run during regression testing. For the moment the chunk should be a simple empty

102 CONTENTS

input file as in:

)set break resume

)sys rm -f InterfaceGroebnerPackage.output

)spool InterfaceGroebnerPackage.output

)set message test on

)set message auto off

)clear all

--S 1 of 1

)show InterfaceGroebnerPackage

--E 1

)spool

)lisp (bye)

7. Create a help text chunk. This chunk dervies its name from the algebra name as
in “InterfaceGroebnerPackage.help”. This chunk will be automatically extracted and
used to build help text during build. For the moment the chunck should be a simple
empty help text file as in:

==

examples InterfaceGroebnerPackage

==

See Also:

o)show InterfaceGroebnerPackage

At this point we need information from the Axiom interpreter to continue. Start Axiom and
compile your program with “autoload” on. For example:

axiom -nox

)set message autoload on

)co InterfaceGroebnerPackage.spad

You will see output containing lines which detail the category, domains, and packages needed
by your code, for example:

Loading /research/test/mnt/ubuntu/algebra/FIELD.o for category Field

Loading /research/test/mnt/ubuntu/algebra/EUCDOM.o for category

EuclideanDomain

Loading /research/test/mnt/ubuntu/algebra/PID.o for category

PrincipalIdealDomain

Loading /research/test/mnt/ubuntu/algebra/GCDDOM.o for category

GcdDomain

Loading /research/test/mnt/ubuntu/algebra/INTDOM.o for category

IntegralDomain

Loading /research/test/mnt/ubuntu/algebra/COMRING.o for category

CommutativeRing

Loading /research/test/mnt/ubuntu/algebra/RING.o for category Ring

Loading /research/test/mnt/ubuntu/algebra/RNG.o for category Rng

Loading /research/test/mnt/ubuntu/algebra/ABELGRP.o for category

AbelianGroup

Loading /research/test/mnt/ubuntu/algebra/CABMON.o for category

CancellationAbelianMonoid

0.28. ADDING ALGEBRA 103

Loading /research/test/mnt/ubuntu/algebra/ABELMON.o for category

AbelianMonoid

Loading /research/test/mnt/ubuntu/algebra/ABELSG.o for category

AbelianSemiGroup

Loading /research/test/mnt/ubuntu/algebra/SETCAT.o for category

SetCategory

Loading /research/test/mnt/ubuntu/algebra/BASTYPE.o for category

BasicType

Loading /research/test/mnt/ubuntu/algebra/KOERCE.o for category

CoercibleTo

Loading /research/test/mnt/ubuntu/algebra/SGROUP.o for category

SemiGroup

Loading /research/test/mnt/ubuntu/algebra/MONOID.o for category

Monoid

Loading /research/test/mnt/ubuntu/algebra/LMODULE.o for category

LeftModule

Loading /research/test/mnt/ubuntu/algebra/BMODULE.o for category

BiModule

Loading /research/test/mnt/ubuntu/algebra/RMODULE.o for category

RightModule

Loading /research/test/mnt/ubuntu/algebra/ALGEBRA.o for category

Algebra

Loading /research/test/mnt/ubuntu/algebra/MODULE.o for category

Module

Loading /research/test/mnt/ubuntu/algebra/ENTIRER.o for category

EntireRing

Loading /research/test/mnt/ubuntu/algebra/UFD.o for category

UniqueFactorizationDomain

Loading /research/test/mnt/ubuntu/algebra/DIVRING.o for category

DivisionRing

Loading /research/test/mnt/ubuntu/algebra/OAMONS.o for category

OrderedAbelianMonoidSup

Loading /research/test/mnt/ubuntu/algebra/OCAMON.o for category

OrderedCancellationAbelianMonoid

Loading /research/test/mnt/ubuntu/algebra/OAMON.o for category

OrderedAbelianMonoid

Loading /research/test/mnt/ubuntu/algebra/OASGP.o for category

OrderedAbelianSemiGroup

Loading /research/test/mnt/ubuntu/algebra/ORDSET.o for category

OrderedSet

Loading /research/test/mnt/ubuntu/algebra/POLYCAT.o for category

PolynomialCategory

Loading /research/test/mnt/ubuntu/algebra/PDRING.o for category

PartialDifferentialRing

Loading /research/test/mnt/ubuntu/algebra/FAMR.o for category

FiniteAbelianMonoidRing

Loading /research/test/mnt/ubuntu/algebra/AMR.o for category

AbelianMonoidRing

Loading /research/test/mnt/ubuntu/algebra/CHARZ.o for category

CharacteristicZero

Loading /research/test/mnt/ubuntu/algebra/CHARNZ.o for category

CharacteristicNonZero

Loading /research/test/mnt/ubuntu/algebra/FRETRCT.o for category

FullyRetractableTo

104 CONTENTS

Loading /research/test/mnt/ubuntu/algebra/RETRACT.o for category

RetractableTo

Loading /research/test/mnt/ubuntu/algebra/EVALAB.o for category

Evalable

Loading /research/test/mnt/ubuntu/algebra/IEVALAB.o for category

InnerEvalable

Loading /research/test/mnt/ubuntu/algebra/FLINEXP.o for category

FullyLinearlyExplicitRingOver

Loading /research/test/mnt/ubuntu/algebra/LINEXP.o for category

LinearlyExplicitRingOver

Loading /research/test/mnt/ubuntu/algebra/KONVERT.o for category

ConvertibleTo

Loading /research/test/mnt/ubuntu/algebra/PATMAB.o for category

PatternMatchable

Loading /research/test/mnt/ubuntu/algebra/PFECAT.o for category

PolynomialFactorizationExplicit

Loading /research/test/mnt/ubuntu/algebra/FFIELDC.o for category

FiniteFieldCategory

Loading /research/test/mnt/ubuntu/algebra/FPC.o for category

FieldOfPrimeCharacteristic

Loading /research/test/mnt/ubuntu/algebra/FINITE.o for category

Finite

Loading /research/test/mnt/ubuntu/algebra/STEP.o for category

StepThrough

Loading /research/test/mnt/ubuntu/algebra/DIFRING.o for category

DifferentialRing

Loading /research/test/mnt/ubuntu/algebra/NNI.o for domain

NonNegativeInteger

Loading /research/test/mnt/ubuntu/algebra/INT.o for domain Integer

These are all of the algebra files on which your algebra depends. Collect all of these names
into a list:

FIELD.o EUCDOM.o PID.o GCDDOM.o INTDOM.o

COMRING.o RING.o RNG.o ABELGRP.o CABMON.o

ABELMON.o ABELSG.o SETCAT.o BASTYPE.o KOERCE.o

SGROUP.o MONOID.o LMODULE.o BMODULE.o RMODULE.o

ALGEBRA.o MODULE.o ENTIRER.o UFD.o DIVRING.o

OAMONS.o OCAMON.o OAMON.o OASGP.o ORDSET.o

POLYCAT.o PDRING.o FAMR.o AMR.o CHARZ.o

CHARNZ.o FRETRCT.o RETRACT.o EVALAB.o IEVALAB.o

FLINEXP.o LINEXP.o KONVERT.o PATMAB.o PFECAT.o

FFIELDC.o FPC.o FINITE.o STEP.o DIFRING.o

NNI.o INT.o

The algebra files are arranged into layers. Algebra in a given layer can only depend on
algebra in lower layers. So algebra in layer 4 can only depend on algebra in layers 0 through
3.

Your algebra depends on all of the above algebra so we first need to answer the question
“What is the highest layer of algebra my code depends upon”.

To answer that question we need to know the layer of each of the above files. This can be
determined by searching the Makefile and finding the layer. We do this here and annotate
the above list, rearranged by layers:

0.28. ADDING ALGEBRA 105

FIELD.o EUCDOM.o PID.o GCDDOM.o INTDOM.o

COMRING.o RING.o RNG.o ABELGRP.o CABMON.o

ABELMON.o ABELSG.o SETCAT.o BASTYPE.o KOERCE.o

SGROUP.o MONOID.o LMODULE.o BMODULE.o RMODULE.o

ALGEBRA.o MODULE.o ENTIRER.o UFD.o DIVRING.o

OAMONS.o OCAMON.o OAMON.o OASGP.o ORDSET.o

POLYCAT.o PDRING.o FAMR.o AMR.o CHARZ.o

CHARNZ.o FRETRCT.o RETRACT.o EVALAB.o IEVALAB.o

FLINEXP.o LINEXP.o KONVERT.o PATMAB.o PFECAT.o

FFIELDC.o FPC.o FINITE.o STEP.o DIFRING.o

NNI.o INT.o

We find that

layer 0

EUCDOM.o GCDDOM.o INTDOM.o COMRING.o RING.o RNG.o ABELGRP.o CABMON.o ABELMON.o

ABELSG.o SETCAT.o BASTYPE.o KOERCE.o MONOID.o ENTIRER.o UFD.o DIVRING.o

POLYCAT.o KONVERT.o FFIELDC.o DIFRING.o NNI.o INT.o

layer 1

SGROUP.o LMODULE.o RMODULE.o ORDSET.o RETRACT.o IEVALAB.o FINITE.o STEP.o

PATMAB.o

layer 2

BMODULE.o OASGP.o PDRING.o CHARZ.o CHARNZ.o EVALAB.o LINEXP.o

layer 3

MODULE.o OAMON.o

layer 4

ALGEBRA.o OCAMON.o

layer 5

PID.o OAMONS.o

layer 6

FIELD.o AMR.o FRETRCT.o FLINEXP.o

layer 7

FAMR.o FPC.o

layer 10

PFECAT.o

So we know that our algebra belongs in layer 11 since it depends on PFECAT which lives
in layer 10.

Now we have all of the information needed to add the algebra to the book. We create a new
section that contains the following parts:

• the \section{...} header

• the input file

• the help file

• the page head markup

106 CONTENTS

• the pagepic markup

• the Exports section

• the theory and discussion section

• the algebra

• the dot picture file information

We’ve already explained most of the sections. Now we insert a chunk for our algebra. The
name of this chunk is important because the Makefile will look for this exact chunk name.
In our example case it looks like:

\begin{chunk}{package INTERGB InterfaceGroebnerPackage}

which is followed immediately by the algebra starting with the “abbrev” command.

Make sure that the section names, input file names, help file names, and chunk names all
reflect the new algebra names.

Next we copy the chunkname to the bottom of the file as part of the algebra chunk.

The next piece to be handled is the “pagepic” tag. This inserts a picture into the book which
shows what files our algebra depends upon. We do this using the graphviz dot program.

We create a file that shows the graph relationship. Since our code INTERGB depends on
PFECAT we show that here. We create a line for our code that looks like:

"INTERGB" [color="#FF4488",href="bookvol10.4.pdf#nameddest=INTERGB"]

This tells us the name of the node, the background color where

• #4488FF is a category

• #88FF44 is a domain

• #FF4488 is a package

• #FF8844 is a numeric

(note the rotation of bytes) and the html link from the graph to the position in the document
so the user can click on the picture and go to the source code. It names the book and the
offset.

We have the same information for PFECAT:

"PFECAT" [color="#4488FF",href="bookvol10.2.pdf#nameddest=PFECAT"]

We combine this information to create a picture file for the graphviz dot program:

digraph pic {

fontsize=10;

bgcolor="#ECEA81";

node [shape=box, color=white, style=filled];

"INTERGB" [color="#FF4488",href="bookvol10.4.pdf#nameddest=INTERGB"]

"PFECAT" [color="#4488FF",href="bookvol10.2.pdf#nameddest=PFECAT"]

"INTERGB" -> "PFECAT"

}

Save this file into $AXIOM/books/pic. Then run:

dot -Tps <pic >ps/v104interfacegroebnerpackage.ps

This will generate a postscript file $AXIOM/books/ps/v104interfacegroebnerpackage.ps

0.28. ADDING ALGEBRA 107

Note that the pagepic name should be lower case as this is the name of a file in the file
system. Axiom uses only lower case names as files to avoid the problem of mixed-case or
ambiguous case file systems.

The pagepic file is saved into a subdirectory (ps) under the books directory. The file contains
the name of the book (v104 is volume 10.4), the name of the algebra in lowercase, and the
extension of ps.

Now we modify the pagepic tag in book volume 10.4 to read:

\pagepic{ps/v104interfacegroebnerpackage.ps}{INTERGB}{1.00}

This tells us where to find the file, what the abbreviation for the file will be, and the scale
factor to use to display the file (1.00).

We copy the body of the pic file to the book so we can easily recreate the graphs:

\begin{chunk}{INTERGB.dotabb}

"INTERGB" [color="#FF4488",href="bookvol10.4.pdf#nameddest=INTERGB"]

"PFECAT" [color="#4488FF",href="bookvol10.2.pdf#nameddest=PFECAT"]

"INTERGB" -> "PFECAT"

\end{chunk}

Next we return to the command line and get explicit information about our new domain:

(1) ->)show INTERGB

InterfaceGroebnerPackage(K: Field,

symb: List Symbol,

E: OrderedAbelianMonoidSup,

OV: OrderedSet,

R: PolynomialCategory(K,E,OV))

is a package constructor

Abbreviation for InterfaceGroebnerPackage is INTERGB

This constructor is exposed in this frame.

Issue)edit /research/silver/PAFF/PAFF/spad/interGBwoGB.spad to see

algebra source code for INTERGB

------------------------------- Operations --------------------------------

groebner : List R -> List R

We need to insert the results of this command into the trivial input file we have created. The
trivial input file will be run during build time and the results of the command at build time
will be compared with the results we provide. The results we provide are actually comments
so they begin with two dashes, the Axiom comment character.

The regression programm (“regress”) compares each line generated by the program with
the line stored in the input file. It only compares lines that start with “–R”. Each test is
surrounded by the comment pair “–S m of n” and “–E m” which indicates the start and end
of test “m” respectively.

Since we will eventually compile this domain from the book the final output line for the)edit
location will be the book. Thus we need to change the line:

Issue)edit /PAFF/interGBwoGB.spad to see algebra source code for INTERGB

to read:

Issue)edit bookvol10.4.pamphlet to see algebra source code for INTERGB

108 CONTENTS

So we update our input file section to read:

)set break resume

)sys rm -f InterfaceGroebnerPackage.output

)spool InterfaceGroebnerPackage.output

)set message test on

)set message auto off

)clear all

--S 1 of 1

)show InterfaceGroebnerPackage

--R InterfaceGroebnerPackage(K: Field,

--R symb: List Symbol,

--R E: OrderedAbelianMonoidSup,

--R OV: OrderedSet,

--R R: PolynomialCategory(K,E,OV))

--R is a package constructor

--R Abbreviation for InterfaceGroebnerPackage is INTERGB

--R This constructor is exposed in this frame.

--R Issue)edit bookvol10.4.pamphlet to see algebra source code for INTERGB

--R

--R------------------------------- Operations --------------------------------

--R groebner : List R -> List R

--R

--E 1

)spool

)lisp (bye)

There is another section, Exports, which lists all of the unique function names exported by
this algebra. Note that this list is longer than just the functions locally defined because the
algebra inherits functions. We make a tabular environment with the number of columns
specified by the “l” characters (“l” means left-justify, “c” would be center, and “r” would
be right justify). We include just enough columns to keep from overflowing the 80 column
limit.

For this domain we see generate we only have a single export.

{\bf Exports:}\\

\cross{INTERGB}{groebner}

The cross function creates a cross-reference entry in the index so you can look up the function
and find the domain or look up the domain and find the function.

Now we have finished setting up the algebra.

We have to add the algebra, regression, and help information to the Makefile.

We know from above that the algebra belongs in layer 11 so we find layer 11 and add this
abbreviation in alphabetical order. We can use this order since none of the files depend on
each other in this layer. The new line looks like:

${OUT}/INMODGCD.o ${OUT}/INNMFACT.o ${OUT}/INPSIGN.o ${OUT}/INTERGB.o \

Note that the trailing slash is required by the Makefile in order to continue the input line.

Take note of the prior algebra abbreviation INPSIGN. We search for that lower down and
find the block reading:

"INPSIGN" [color="#FF4488",href="bookvol10.4.pdf#nameddest=INPSIGN"]

0.28. ADDING ALGEBRA 109

/*"INPSIGN" -> {"RING"; "RNG"; "ABELGRP"; "CABMON"; "ABELMON"; "ABELSG"}*/

/*"INPSIGN" -> {"SETCAT"; "BASTYPE"; "KOERCE"; "SGROUP"; "MONOID"}*/

/*"INPSIGN" -> {"LMODULE"; "UPOLYC"; "POLYCAT"; "PDRING"; "FAMR"; "AMR"}*/

/*"INPSIGN" -> {"BMODULE"; "RMODULE"; "COMRING"; "ALGEBRA"; "MODULE"}*/

/*"INPSIGN" -> {"CHARZ"; "CHARNZ"; "INTDOM"; "ENTIRER"; "FRETRCT"}*/

/*"INPSIGN" -> {"RETRACT"; "EVALAB"; "IEVALAB"; "FLINEXP"; "LINEXP"}*/

/*"INPSIGN" -> {"ORDSET"; "KONVERT"; "PATMAB"; "GCDDOM"}*/

"INPSIGN" -> "PFECAT"

/*"INPSIGN" -> {"UFD"; "ELTAB"; "DIFRING"; "DIFEXT"; "STEP"; "EUCDOM"}*/

/*"INPSIGN" -> {"PID"; "FIELD"; "DIVRING"; "INT"; "INS-"}*/

This information is used to create the total graph of the algebra. Most of this information
is kept for future graph use but commented out. We only uncomment lines that are di-
rect dependence relationships. As you can see from the above INPSIGN depends only on
PFECAT.

First we create the signature line which is the same one used above for the pagepic graph.

We also need to create a similar block for our code. We use the list generated above, replacing
the “.o” with semicolons.

The total result is:

"INTERGB" [color="#FF4488",href="bookvol10.4.pdf#nameddest=INTERGB"]

/*"INTERGB" -> {

/*"INTERGB" -> {"FIELD"; "EUCDOM"; "PID"; "GCDDOM"; "INTDOM"; "COMRING"}*/

/*"INTERGB" -> {"RING"; "RNG"; "ABELGRP"; "CABMON"; "ABELMON"; "ABELSG"}*/

/*"INTERGB" -> {"SETCAT"; "BASTYPE"; "KOERCE"; "SGROUP"; "MONOID"}*/

/*"INTERGB" -> {"LMODULE"; "BMODULE"; "RMODULE"; "ALGEBRA"; "MODULE"}*/

/*"INTERGB" -> {"ENTIRER"; "UFD"; "DIVRING"; "OAMONS"; "OCAMON"; "OAMON"}*/

/*"INTERGB" -> {"OASGP"; "ORDSET"; "POLYCAT"; "PDRING"; "FAMR"; "AMR"}*/

/*"INTERGB" -> {"CHARZ"; "CHARNZ"; "FRETRCT"; "RETRACT"; "EVALAB"}*/

/*"INTERGB" -> {"IEVALAB"; "FLINEXP"; "LINEXP"; "KONVERT"; "PATMAB"}*/

"INTERGB" -> "PFECAT"

/*"INTERGB" -> {"FFIELDC"; "FPC"; "FINITE"; "STEP"; "DIFRING"; "NNI"; "INT"}*/

Help files are automatically extracted from the books using the lisp function “makeHelpFiles”
which lives in books/tangle.lisp. This will find all of the .help chunks in books of interest
and write each chunk to the target directory in its own filename. So if a chunk name is
somedomain.help we create the help file somedomain.help containing the chunk value.

Now we create the regression hook. Look for the list REGRESS and add the line containing
the algebra thus:

InterfaceGroebnerPackage.regress \

This will cause regression to be run on the InterfaceGroebnerPackage.input file.

We need to modify book volume 5 (the interpreter) to add this algebra to the list of exposed
algebra. To do this, add the line:

(|InterfaceGroebnerPackage| . INTERGB)

to the variable $globalExposureGroupAlist under the “basic” sublist.

Now the algebra should build and have the new algebra available. There are ways this can
fail which we will cover in more detail.

Once the code compiles cleanly there are a few ways to check that it works. First, check
that the file int/input/InterfaceGroebnerPackage.regress shows no failures. Second, run the

110 CONTENTS

command

)show InterfaceGroebnerPackage

to see if the domain exists. Run the command

)help InterfaceGroebnerPackage

to see that the help file exists. Run the command

)describe InterfaceGroebnerPackage

to see that the description paragraph exists.

0.28.2 Creating a stand-alone pamphlet file

Suppose we want to add a new algebra file from a new pamphlet. For example, we want to
add BLAS1.spad in books/newbook.pamphlet. The explanation for the steps follow. The
steps are:

1. write the algebra code

2. create the pamphlet file called newbook.pamphlet

3. create a new section in newbook.pamphlet

4. create the chunk name stanza in newbook.pamphlet

5. insert BLAS1.spad into the new stanza

6. create the dotabb stanza in newbook.pamphlet

7. update src/algebra/Makefile.pamphlet to insert BLAS1.spad

8. update src/algebra/Makefile.pamphlet to insert BLAS1 into graph

9. update the dotabb stanza in newbook.pamphlet

10. update src/Makefile.pamphlet to copy the newbook file to src/algebra

11. update $globalExposureGroupAlist in bookvol5 to add BLAS1 to basic

0.29 Makefile

This book is actually a literate program[Knut92] and can contain executable source code. In
particular, the Makefile for this book is part of the source of the book and is included below.

Bibliography

[Bake14] Martin Baker. Axiom Architecture, 2014.

Link: http://www.euclideanspace.com/prog/scratchpad/

internals/ccode

[Knut92] Donald E. Knuth. Literate Programming. Center for the Study of Language and
Information, Stanford CA, 1992, 0-937073-81-4.

111

http://www.euclideanspace.com/prog/scratchpad/internals/ccode
http://www.euclideanspace.com/prog/scratchpad/internals/ccode

112 BIBLIOGRAPHY

	Tedious Maintainer Tasks
	Maintaining the credits list

	What is the purpose of the HACKPI domain?
	How Axiom Builds
	The environment variables

	The runtime structure of Axiom
	The build step
	Where each output file is created

	How Axiom Works
	Input and Type Selection
	A simple integral
	A simple integral, expansion 1 interpreter
	A simple integral, expansion 2 integrate
	A simple integral, expansion 2 internalIntegrate
	A simple integral, expansion 3 univariate
	A simple integral, expansion 4 integrate
	A simple integral, expansion 5 monomialIntegrate
	A simple integral, expansion 6 HermiteIntegrate

	Tools
	svn
	git
	cvs

	Common Lisps
	GCL
	CCL
	CMU CL
	Franz Lisp
	Lucid Common Lisp
	Symbolics Common Lisp
	Golden Common Lisp
	VM/LISP 370
	Maclisp

	Changing GCL versions
	Literate Programming
	Pamphlet files
	noweb

	Databases
	libcheck
	asq

	Axiom internal representations
	Spad to internal function calling
	getdatabse output

	axiom command
	help command documentation
	help documentation for algebra
	Adding help documentation in Makefile
	Using help documentation for regression testing
	help documentation as algebra test files

	debugsys
	debugging hyperdoc

	Understanding a compiled function
	The axiom.input startup file
	Where are Axiom symbols stored?
	Translating individual boot files to common lisp
	Directories
	The mnt/linux/bin directory
	The mnt/linux/doc directory
	The mnt/linux/algebra directory
	The mnt/linux/etc directory
	The mnt/linux/lib directory

	The)set command
	Special Output Formats
	Hand creating the hyperdoc binary
	Low Level Debugging Techniques
	Finding Anonymous Function Signatures
	The example bug
	Operating system level I/O trace (strace)

	How to make graphs in algebra books
	Adding or Editing pages in Hyperdoc
	Graphviz file creation
	Adding Algebra
	Adding algebra to the books
	Creating a stand-alone pamphlet file

	Makefile
	Bibliography

